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PREFACE

This tenth edition of Calculus maintains those aspects of previous editions that have led
to the series’ success—we continue to strive for student comprehension without sacrificing
mathematical accuracy, and the exercise sets are carefully constructed to avoid unhappy
surprises that can derail a calculus class.

All of the changes to the tenth edition were carefully reviewed by outstanding teachers
comprised of both users and nonusers of the previous edition. The charge of this committee
was to ensure that all changes did not alter those aspects of the text that attracted users of
the ninth edition and at the same time provide freshness to the new edition that would attract
new users.

. NEW TO THIS EDITION

. OTHER FEATURES

¢ Exercise sets have been modified to correspond more closely to questions in WileyPLUS.
In addition, more WileyPLUS questions now correspond to specific exercises in the text.

e New applied exercises have been added to the book and existing applied exercises have
been updated.

e Where appropriate, additional skill/practice exercises were added.

Flexibility Thisedition has a built-in flexibility that is designed to serve a broad spectrum
of calculus philosophies—from traditional to “reform.” Technology can be emphasized or
not, and the order of many topics can be permuted freely to accommodate each instructor’s
specific needs.

Rigor The challenge of writing a good calculus book is to strike the right balance between
rigor and clarity. Our goal is to present precise mathematics to the fullest extent possible
in an introductory treatment. Where clarity and rigor conflict, we choose clarity; however,
we believe it to be important that the student understand the difference between a careful
proof and an informal argument, so we have informed the reader when the arguments being
presented are informal or motivational. Theory involving €-§ arguments appears in separate
sections so that they can be covered or not, as preferred by the instructor.

Rule of Four The “rule of four” refers to presenting concepts from the verbal, algebraic,
visual, and numerical points of view. In keeping with current pedagogical philosophy, we
used this approach whenever appropriate.

Visualization This edition makes extensive use of modern computer graphics to clarify
concepts and to develop the student’s ability to visualize mathematical objects, particularly

those in 3-space. For those students who are working with graphing technology, there are

vii



Preface

many exercises that are designed to develop the student’s ability to generate and analyze
mathematical curves and surfaces.

Quick Check Exercises Each exercise set begins with approximately five exercises
(answers included) that are designed to provide students with an immediate assessment
of whether they have mastered key ideas from the section. They require a minimum of
computation and are answered by filling in the blanks.

Focus on Concepts Exercises Each exercise set contains a clearly identified group
of problems that focus on the main ideas of the section.

Technology Exercises Most sections include exercises that are designed to be solved
using either a graphing calculator or a computer algebra system such as Mathematica,
Maple, or the open source program Sage. These exercises are marked with an icon for easy
identification.

Applicability of Calculus One of the primary goals of this text is to link calculus
to the real world and the student’s own experience. This theme is carried through in the
examples and exercises.

Career Preparation This text is written at a mathematical level that will prepare stu-
dents for a wide variety of careers that require a sound mathematics background, including
engineering, the various sciences, and business.

Trigonometry Review Deficiencies in trigonometry plague many students, so we
have included a substantial trigonometry review in Appendix B.

Appendix on Polynomial Equations Because many calculus students are weak
in solving polynomial equations, we have included an appendix (Appendix C) that reviews
the Factor Theorem, the Remainder Theorem, and procedures for finding rational roots.

Principles of Integral Evaluation The traditional Techniques of Integration is
entitled “Principles of Integral Evaluation” to reflect its more modern approach to the
material. The chapter emphasizes general methods and the role of technology rather than
specific tricks for evaluating complicated or obscure integrals.

Historical Notes The biographies and historical notes have been a hallmark of this
text from its first edition and have been maintained. All of the biographical materials have
been distilled from standard sources with the goal of capturing and bringing to life for the
student the personalities of history’s greatest mathematicians.

Margin Notes and Warnings These appear in the margins throughout the text to
clarify or expand on the text exposition or to alert the reader to some pitfall.



SUPPLEMENTS

The Student Solutions Manual, which is printed in two volumes, provides detailed solu-
tions to the odd-numbered exercises in the text. The structure of the step-by-step solutions
matches those of the worked examples in the textbook. The Student Solutions Manual is
also provided in digital format to students in WileyPLUS.

Volume I (Single-Variable Calculus, Early Transcendentals) ISBN: 978-1-118-17381-7
Volume II (Multivariable Calculus, Early Transcendentals) ISBN: 978-1-118-17383-1

The Student Study Guide is available for download from the book companion Web site at
www.wiley.com/college/anton or at www.howardanton.com and to users of WileyPLUS.

The Instructor’s Solutions Manual, which is printed in two volumes, contains detailed
solutions to all of the exercises in the text. The Instructor’s Solutions Manual is also available
in PDF format on the password-protected Instructor Companion Site at www.wiley.com/
college/anton or at www.howardanton.com and in WileyPLUS.

Volume I (Single-Variable Calculus, Early Transcendentals) ISBN: 978-1-118-17378-7
Volume II (Multivariable Calculus, Early Transcendentals) ISBN: 978-1-118-17379-4

The Instructor’s Manual suggests time allocations and teaching plans for each section in
the text. Most of the teaching plans contain a bulleted list of key points to emphasize. The
discussion of each section concludes with a sample homework assignment. The Instructor’s
Manual is available in PDF format on the password-protected Instructor Companion Site
at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.

The Web Projects (Expanding the Calculus Horizon) referenced in the text can also be
downloaded from the companion Web sites and from WileyPLUS.

Instructors can also access the following materials from the book companion site or
WileyPLUS:

¢ Interactive Illustrations can be used in the classroom or computer lab to present and
explore key ideas graphically and dynamically. They are especially useful for display
of three-dimensional graphs in multivariable calculus.

¢ The Computerized Test Bank features more than 4000 questions—mostly algorithmi-
cally generated—that allow for varied questions and numerical inputs.

¢ The Printable Test Bank features questions and answers for every section of the text.

¢ PowerPoint lecture slides cover the major concepts and themes of each section of
the book. Personal-Response System questions (“Clicker Questions™) appear at the
end of each PowerPoint presentation and provide an easy way to gauge classroom
understanding.

¢ Additional calculus content covers analytic geometry in calculus, mathematical mod-
eling with differential equations and parametric equations, as well as an introduction to
linear algebra.

ix



x Supplements

WileyPLUS
WileyPLUS, Wiley’s digital-learning environment, is loaded with all of the supplements
listed on the previous page, and also features the following:

¢ Homework management tools, which easily allow you to assign and grade algorithmic
questions, as well as gauge student comprehension.

¢ Algorithmic questions with randomized numeric values and an answer-entry palette for
symbolic notation are provided online though WileyPLUS. Students can click on “help”
buttons for hints, link to the relevant section of the text, show their work or query their
instructor using a white board, or see a step-by-step solution (depending on instructor-
selecting settings).

¢ Interactive Illustrations can be used in the classroom or computer lab, or for student
practice.

® QuickStart predesigned reading and homework assignments. Use them as-is or
customize them to fit the needs of your classroom.

¢ The e-book, which is an exact version of the print text but also features hyperlinks to
questions, definitions, and supplements for quicker and easier support.

¢ Guided Online (GO) Tutorial Exercises that prompt students to build solutions step
by step. Rather than simply grading an exercise answer as wrong, GO tutorial problems
show students precisely where they are making a mistake.

¢ AreYou Ready? quizzes gauge student mastery of chapter concepts and techniques and
provide feedback on areas that require further attention.

¢ Algebra and Trigonometry Refresher quizzes provide students with an opportunity to
brush up on the material necessary to master calculus, as well as to determine areas that
require further review.

WileyPLUS. Learn more at www.wileyplus.com.
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xviii The Roots of Calculus

. THE ROOTS OF CALCULUS

Today’s exciting applications of calculus have roots that can
be traced to the work of the Greek mathematician Archimedes,
but the actual discovery of the fundamental principles of cal-
culus was made independently by Isaac Newton (English) and
Gottfried Leibniz (German) in the late seventeenth century.
The work of Newton and Leibniz was motivated by four major
classes of scientific and mathematical problems of the time:

specifies the acceleration of velocity at any instant, find the
distance traveled by the body in a specified period of time.

Newton and Leibniz found a fundamental relationship be-
tween the problem of finding a tangent line to a curve and
the problem of determining the area of a region. Their real-
ization of this connection is considered to be the “discovery

¢ Find the tangent line to a general curve at a given point.

¢ Find the area of a general region, the length of a general
curve, and the volume of a general solid.

¢ Find the maximum or minimum value of a quantity—for
example, the maximum and minimum distances of a planet
from the Sun, or the maximum range attainable for a pro-

jectile by varying its angle of fire.

¢ Given a formula for the distance traveled by a body in any
specified amount of time, find the velocity and acceleration
of the body at any instant. Conversely, given a formula that

of calculus.” Though Newton saw how these two problems
are related ten years before Leibniz did, Leibniz published
his work twenty years before Newton. This situation led to a
stormy debate over who was the rightful discoverer of calculus.
The debate engulfed Europe for half a century, with the scien-
tists of the European continent supporting Leibniz and those
from England supporting Newton. The conflict was extremely
unfortunate because Newton’s inferior notation badly ham-
pered scientific development in England, and the Continent in
turn lost the benefit of Newton’s discoveries in astronomy and
physics for nearly fifty years. In spite of it all, Newton and
Leibniz were sincere admirers of each other’s work.

[Image: Public domain image from http://commons.wikimedia.org/
wiki/File:Hw-newton.jpg. Image provided courtesy of the University
of Texas Libraries, The University of Texas at Austin.]

ISAAC NEWTON (1642-1727)

Newton was born in the village of Woolsthorpe, England. His father died
before he was born and his mother raised him on the family farm. As a youth
he showed little evidence of his later brilliance, except for an unusual talent with
mechanical devices—he apparently built a working water clock and a toy flour
mill powered by a mouse. In 1661 he entered Trinity College in Cambridge
with a deficiency in geometry. Fortunately, Newton caught the eye of Isaac
Barrow, a gifted mathematician and teacher. Under Barrow’s guidance Newton
immersed himself in mathematics and science, but he graduated without any
special distinction. Because the bubonic plague was spreading rapidly through
London, Newton returned to his home in Woolsthorpe and stayed there during
the years of 1665 and 1666. In those two momentous years the entire framework
of modern science was miraculously created in Newton’s mind. He discovered
calculus, recognized the underlying principles of planetary motion and gravity,
and determined that “white” sunlight was composed of all colors, red to violet.
For whatever reasons he kept his discoveries to himself. In 1667 he returned to
Cambridge to obtain his Master’s degree and upon graduation became a teacher
at Trinity. Then in 1669 Newton succeeded his teacher, Isaac Barrow, to the
Lucasian chair of mathematics at Trinity, one of the most honored chairs of
mathematics in the world.

Thereafter, brilliant discoveries flowed from Newton steadily. He formulated
the law of gravitation and used it to explain the motion of the moon, the planets,

and the tides; he formulated basic theories of light, thermodynamics, and hydrodynamics;
and he devised and constructed the first modern reflecting telescope. Throughout his life
Newton was hesitant to publish his major discoveries, revealing them only to a select
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. FOR THE STUDENT

Calculus provides a way of viewing and analyzing the physi-
cal world. As with all mathematics courses, calculus involves
equations and formulas. However, if you successfully learn to
use all the formulas and solve all of the problems in the text
but do not master the underlying ideas, you will have missed
the most important part of calculus. If you master these ideas,
you will have a widely applicable tool that goes far beyond
textbook exercises.

Before starting your studies, you may find it helpful to leaf
through this text to get a general feeling for its different parts:

B The opening page of each chapter gives you an overview
of what that chapter is about, and the opening page of each
section within a chapter gives you an overview of what that
section is about. To help you locate specific information,
sections are subdivided into topics that are marked with a
box like this m.

B Each section ends with a set of exercises. The answers
to most odd-numbered exercises appear in the back of the
book. If you find that your answer to an exercise does not
match that in the back of the book, do not assume immedi-
ately that yours is incorrect—there may be more than one
way to express the answer. For example, if your answer is
V/2/2 and the text answer is 1/+/2 , then both are correct
since your answer can be obtained by “rationalizing” the
text answer. In general, if your answer does not match that
in the text, then your best first step is to look for an algebraic
manipulation or a trigonometric identity that might help you
determine if the two answers are equivalent. If the answer
is in the form of a decimal approximation, then your answer
might differ from that in the text because of a difference in
the number of decimal places used in the computations.

B The section exercises include regular exercises and four
special categories: Quick Check, Focus on Concepts,
True/False, and Writing.
¢ The Quick Check exercises are intended to give you quick
feedback on whether you understand the key ideas in the
section; they involve relatively little computation, and
have answers provided at the end of the exercise set.

¢ The Focuson Conceptsexercises, as their name suggests,
key in on the main ideas in the section.

e True/False exercises focus on key ideas in a different
way. You must decide whether the statement is true in all
possible circumstances, in which case you would declare
it to be “true,” or whether there are some circumstances
in which it is not true, in which case you would declare
it to be “false.” In each such exercise you are asked to
“Explain your answer.” You might do this by noting a
theorem in the text that shows the statement to be true or

by finding a particular example in which the statement
is not true.

e \Writing exercises are intended to test your ability to ex-
plain mathematical ideas in words rather than relying
solely on numbers and symbols. All exercises requiring
writing should be answered in complete, correctly punc-
tuated logical sentences—not with fragmented phrases
and formulas.

B Each chapter ends with two additional sets of exercises:
Chapter Review Exercises, which, as the name suggests, is
a select set of exercises that provide a review of the main
concepts and techniques in the chapter, and Making Con-
nections, in which exercises require you to draw on and
combine various ideas developed throughout the chapter.

B Your instructor may choose to incorporate technology in
your calculus course. Exercises whose solution involves
the use of some kind of technology are tagged with icons to
alert you and your instructor. Those exercises tagged with
the icon M require graphing technology—either a graphing
calculator or a computer program that can graph equations.
Those exercises tagged with the icon [€] require a com-
puter algebra system (CAS) such as Mathematica, Maple,
or available on some graphing calculators.

W At the end of the text you will find a set of four appen-
dices covering various topics such as a detailed review of
trigonometry and graphing techniques using technology.
Inside the front and back covers of the text you will find
endpapers that contain useful formulas.

B The ideas in this text were created by real people with in-
teresting personalities and backgrounds. Pictures and bio-
graphical sketches of many of these people appear through-
out the book.

B Notes in the margin are intended to clarify or comment on
important points in the text.

A Word of Encouragement

As you work your way through this text you will find some
ideas that you understand immediately, some that you don’t
understand until you have read them several times, and others
that you do not seem to understand, even after several readings.
Do not become discouraged—some ideas are intrinsically dif-
ficult and take time to “percolate.” You may well find that a
hard idea becomes clear later when you least expect it.

Web Sites for this Text

www.antontextbooks.com
www.wiley.com/go/global/anton
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The development of calculus in the
seventeenth and eighteenth
centuries was motivated by the need
to understand physical phenomena
such as the tides, the phases of the
moon, the nature of light, and

gravity.

m FUNCTIONS

.. BEFORE CALCULUS

One of the important themes in calculus is the analysis of relationships between physical or
mathematical quantities. Such relationships can be described in terms of graphs, formulas,
numerical data, or words. In this chapter we will develop the concept of a “function,” which is
the basic idea that underlies almost all mathematical and physical relationships, regardless of
the form in which they are expressed. We will study properties of some of the most basic
functions that occur in calculus, including polynomials, trigonometric functions, inverse
trigonometric functions, exponential functions, and logarithmic functions.

In this section we will define and develop the concept of a “function,” which is the basic
mathematical object that scientists and mathematicians use to describe relationships
between variable quantities. Functions play a central role in calculus and its applications.

DEFINITION OF A FUNCTION

Many scientific laws and engineering principles describe how one quantity depends on
another. This idea was formalized in 1673 by Gottfried Wilhelm Leibniz (see p. xx) who
coined the term function to indicate the dependence of one quantity on another, as described
in the following definition.

0.1.1 perFINITION If a variable y depends on a variable x in such a way that each
value of x determines exactly one value of y, then we say thaty is a function of x.

Four common methods for representing functions are:

e Numerically by tables e Geometrically by graphs
e Algebraically by formulas e Verbally
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QUALIFYING SPEEDS °

Table 0.1.1 The method of representation often depends on how the function arises. For example:
INDIANAPOLIS 500

Table 0.1.1 shows the top qualifying speed S for the Indianapolis 500 auto race as a

YEAR t SPEED S

function of the year ¢. There is exactly one value of S for each value of 7.

(mi/h)
1994 228.011 * Figure 0.1.1 is a graphical record of an earthquake recorded on a seismograph. The
1995 231:604 graph describes the deflection D of the seismograph needle as a function of the time
1996 233.100 T elapsed since the wave left the earthquake’s epicenter. There is exactly one value
1997 218.263 of D for each value of T'.
1998 223.503 ¢ Some of the most familiar functions arise from formulas; for example, the formula

1999 225.179

C = 2nr expresses the circumference C of a circle as a function of its radius r. There

2000 223471

2001 226.037

is exactly one value of C for each value of r.

2002 231.342 ¢ Sometimes functions are described in words. For example, Isaac Newton’s Law of
2003 231.725 Universal Gravitation is often stated as follows: The gravitational force of attraction
2004 222.024 between two bodies in the Universe is directly proportional to the product of their
2005 227.598 masses and inversely proportional to the square of the distance between them. This
2006 228.985 is the verbal description of the formula

2007 | 225817 mymy

2008 | 226.366 F=G6—

2009 | 224.864 d

2010 227.970 in which F is the force of attraction, m and m, are the masses, r is the distance be-
2011 227472 tween them, and G is a constant. If the masses are constant, then the verbal description

D

shock

m

Time in minutes
0 10

defines F as a function of r. There is exactly one value of F for each value of r.

Time of Arrival of Arrival of
earthquake P-waves S-waves

9.4 Surface waves
11.8 minutes i

inutes

A Figure 0.1.1

In the mid-eighteenth century the Swiss mathematician Leonhard Euler (pronounced
f “oiler”) conceived the idea of denoting functions by letters of the alphabet, thereby making
it possible to refer to functions without stating specific formulas, graphs, or tables. To

CFc’Jrrggprl;';ir understand Euler’s idea, think of a function as a computer program that takes an input x,
Input X »|=——————| Outputy operates on it in some way, and produces exactly one output y. The computer program is an
object in its own right, so we can give it a name, say f. Thus, the function f (the computer
program) associates a unique output y with each input x (Figure 0.1.2). This suggests the
A Figure 0.1.2 following definition.
225
é igg . :. . 0.1.2 DEFINITION A function f is a rule that associates a unique output with each
= igg .‘§§!:2:° input. If the input is denoted by x, then the output is denoted by f(x) (read * f of x”).
i 100 K TI
w75 L
2 50 L Hm ‘T‘ Lt In this definition the term unique means “exactly one.” Thus, a function cannot assign
10 15 20 25 30 two different outputs to the same input. For example, Figure 0.1.3 shows a plot of weight
Age A (years) versus age for a random sample of 100 college students. This plot does not describe W

A Figure 0.1.3 as a function of A because there are some values of A with more than one corresponding
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value of W. This is to be expected, since two people with the same age can have different
weights.

Il INDEPENDENT AND DEPENDENT VARIABLES
For a given input x, the output of a function f is called the value of f at x or the image of
x under f. Sometimes we will want to denote the output by a single letter, say y, and write

y = f(x)

This equation expresses y as a function of x; the variable x is called the independent
variable (or argument) of f, and the variable y is called the dependent variable of f. This
terminology is intended to suggest that x is free to vary, but that once x has a specific value a
corresponding value of y is determined. For now we will only consider functions in which
the independent and dependent variables are real numbers, in which case we say that f is
areal-valued function of a real variable. Later, we will consider other kinds of functions.

Table 0.1.2 » Example 1 Table 0.1.2 describes a functional relationship y = f(x) for which
x|0|1]| 2|3 f(0)=3 f associates y = 3 with x = 0.
y|3|4|-1|6 f(H)y=4 f associates y = 4 with x = 1.
f2)=-1 f associates y = —1 with x = 2.
f(3)y=6 f associates y = 6 withx =3. | <

» Example 2 The equation

y=3x>—4x +2

has the form y = f(x) in which the function f is given by the formula

Leonhard Euler (1707-1783) Euler was probably the
most prolific mathematician who ever lived. It has been
said that “Euler wrote mathematics as effortlessly as most
men breathe.” He was born in Basel, Switzerland, and
was the son of a Protestant minister who had himself
studied mathematics. Euler’s genius developed early. He
attended the University of Basel, where by age 16 he obtained both a
Bachelor of Arts degree and a Master’s degree in philosophy. While
at Basel, Euler had the good fortune to be tutored one day a week in
mathematics by a distinguished mathematician, Johann Bernoulli.
At the urging of his father, Euler then began to study theology. The
lure of mathematics was too great, however, and by age 18 Euler
had begun to do mathematical research. Nevertheless, the influence
of his father and his theological studies remained, and throughout
his life Euler was a deeply religious, unaffected person. At various
times Euler taught at St. Petersburg Academy of Sciences (in Rus-
sia), the University of Basel, and the Berlin Academy of Sciences.
Euler’s energy and capacity for work were virtually boundless. His
collected works form more than 100 quarto-sized volumes and it is
believed that much of his work has been lost. What is particularly

f(x)=3x*—4x+2

astonishing is that Euler was blind for the last 17 years of his life,
and this was one of his most productive periods! Euler’s flawless
memory was phenomenal. Early in his life he memorized the entire
Aeneid by Virgil, and at age 70 he could not only recite the entire
work but could also state the first and last sentence on each page
of the book from which he memorized the work. His ability to
solve problems in his head was beyond belief. He worked out in his
head major problems of lunar motion that baffled Isaac Newton and
once did a complicated calculation in his head to settle an argument
between two students whose computations differed in the fiftieth
decimal place.

Following the development of calculus by Leibniz and Newton,
results in mathematics developed rapidly in a disorganized way. Eu-
ler’s genius gave coherence to the mathematical landscape. He was
the first mathematician to bring the full power of calculus to bear
on problems from physics. He made major contributions to virtu-
ally every branch of mathematics as well as to the theory of optics,
planetary motion, electricity, magnetism, and general mechanics.

[Image: http://commons.wikimedia.org/wiki/ File:L

hard_Euler_by_Hand _.pngl
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Figure 0.1.4 shows only portions of the
graphs. Where appropriate, and unless
indicated otherwise, it is understood
that graphs shown in this text extend
indefinitely beyond the boundaries of
the displayed figure.

Since +/x is imaginary for negative val-
ues of x, there are no points on the
graph of y = /x in the region where
x < 0.

(x f(9)
y=f(x)

fO 1

A Figure 0.1.5 The y-coordinate of a

point on the graph of y = f(x) is the n

value of f at the corresponding
x-coordinate.

For each input x, the corresponding output y is obtained by substituting x in this formula.
For example,

£(0) =3(0)> —40) +2=2
f(=1.7) =3(-1.7) —4(—1.7) +2 = 17.47
f(V2) =32 —4/2+2=8-4V2

f associates y = 2 with x = 0.

f associates y = 17.47 with x = —1.7.

f associates y = 8 — 44/2 withx = /2.

GRAPHS OF FUNCTIONS

If f is a real-valued function of a real variable, then the graph of f in the xy-plane is
defined to be the graph of the equation y = f(x). For example, the graph of the function
f(x) = x is the graph of the equation y = x, shown in Figure 0.1.4. That figure also shows
the graphs of some other basic functions that may already be familiar to you. In Appendix
A we discuss techniques for graphing functions using graphing technology.

=X y =X =X
4 \ Y y 7 b y 8 \ Y y
3 - 6 | 6 L
2 - 4 L
1 - > i 2 -
o J N L iX 4 L oL— 1 1 L X
-1 L 3 | 2 L
-2 L 5 4 L
-3 L -6 L
-4 - 1 - -8 L
-4-3-2-1 01 2 3 4 o1 | | | |x -8-6-4-2 0 2 4 6 8
-1 -
-3 -2-1 0 1 2 3
=1/x =X = \3/;
4 y ¥y 4 A Y y 4 \Y Y
> > | : i
1 L . 1L « 2 B
0 | | | | | O | | S S ) I A N I | 1
X
-1 - -1 - 04— 1 1 L1
_2 L -2 1 o
-3 L -3 r
a4l -2 -
5-4-3-2-1 012345 -10123456789 -3 L
4 L
-8-6-4-2 0 2 4 6 8
A Figure 0.1.4

Graphs can provide valuable visual information about a function. For example, since
the graph of a function f in the xy-plane is the graph of the equation y = f(x), the points
on the graph of f are of the form (x, f(x)); thatis, the y-coordinate of a point on the graph
of f is the value of f at the corresponding x-coordinate (Figure 0.1.5). The values of x
for which f(x) = 0 are the x-coordinates of the points where the graph of f intersects the
x-axis (Figure 0.1.6). These values are called the zeros of f, the roots of f(x) = 0, or the
x-intercepts of the graph of y = f(x).

THE VERTICAL LINE TEST

Not every curve in the xy-plane is the graph of a function. For example, consider the curve
in Figure 0.1.7, which is cut at two distinct points, (a, b) and (a, c¢), by a vertical line. This
curve cannot be the graph of y = f(x) for any function f; otherwise, we would have

fl@)=>b and f(a)=c
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Y which is impossible, since f cannot assign two different values to a. Thus, there is no
y =f(x) function f whose graph is the given curve. This illustrates the following general result,
which we will call the vertical line test.

N\ / X 0.1.3 THE VERTICAL LINE TEST A curve in the xy-plane is the graph of some function
X, \/| 0 XS X3 [ if and only if no vertical line intersects the curve more than once.

A Figure 0.1.6 f has zeros at xp, 0, x2,

and x3.
, » Example 3 The graph of the equation
x4+ y* =25
is acircle of radius 5 centered at the origin and hence there are vertical lines that cut the graph
more than once (Figure 0.1.8). Thus this equation does not define y as a function of x. «
(ac)
/— (a,h) x. THE ABSOLUTE VALUE FUNCTION
a Recall that the absolute value or magnitude of a real number x is defined by
A Figure 0.1.7 This curve cannot be x, x>0
the graph of a function. x| = —x, x<0

The effect of taking the absolute value of a number is to strip away the minus sign if the
number is negative and to leave the number unchanged if it is nonnegative. Thus,

I5/=5. |-%=3% 10/=0

Symbols such as +x and —x are de-
ceptive, since it is tempting to conclude
that +x is positive and —x is negative.
However, this need not be so, since x
itself can be positive or negative. For

A more detailed discussion of the properties of absolute value is given in Web Appendix
F. However, for convenience we provide the following summary of its algebraic properties.

example, if x is negative, say x = —3,
then —x = 3 is positive and +x = —3
Speeatves 0.1.4 PROPERTIES OF ABSOLUTE VALUE [f a and b are real numbers, then
(a) |—Cl | = |a | A number and its negative have the same absolute value.
(b) |ab| = |a | |b| The absolute value of a product is the product of the absolute values.
2,2_
XTHy"=25 (C) |Cl/b| = |Cl | / |b | s b 75 0 The absolute value of a ratio is the ratio of the absolute values.
. (d) la+b| <la|+ |b| The triangle inequality
| L1 11 |
-6 6
The graph of the function f(x) = |x| can be obtained by graphing the two parts of the
equation
q x, x>0
y =
A Figure 0.1.8 -x, x<0
separately. Combining the two parts produces the V-shaped graph in Figure 0.1.9.
WARNING Absolute values have important relationships to square roots. To see why this is so, recall

from algebra that every positive real number x has two square roots, one positive and one
To denote the negative square root you negative. By definition, the symbol /x denotes the positive square root of x.

must write —/x. For example, the Care must be exercised in simplifying expressions of the form Vx2, since it is not always
positive square root of 9 is v0=3, e that v/x2 = x. This equation is correct if x is nonnegative, but it is false if x is negative.

whereas the negative square root of 9 . _
is —+v/9 = —3. (Do not make the mis- For example, if x = —4, then

take of writing \@ =43) \/F _ \/m _ \/% —4 7& X
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TECHNOLOGY MASTERY

Verify (1) by using a graphing utility to
show that the equations y = +/x2 and
¥ = |x| have the same graph.

[ |
Y y=Ix|

-1 L

-5-4-3-2-1 01 2 3 45
A Figure 0.1.9

N

-2 -1 1 2
A Figure 0.1.10

REMARK |

© Brian Horisk/Alamy

The wind chill index measures the
sensation of coldness that we feel from
the combined effect of temperature and
wind speed.

A statement that is correct for all real values of x is

Va2 = x| 4))

PIECEWISE-DEFINED FUNCTIONS
The absolute value function f(x) = |x|is an example of a function that is defined piecewise
in the sense that the formula for f changes, depending on the value of x.

» Example 4 Sketch the graph of the function defined piecewise by the formula

0, x < -1
f)={v1—-x2, —-1l<x<l
X, x>1

Solution. The formula for f changes at the points x = —1 and x = 1. (We call these the
breakpoints for the formula.) A good procedure for graphing functions defined piecewise
is to graph the function separately over the open intervals determined by the breakpoints,
and then graph f at the breakpoints themselves. For the function f in this example the
graph is the horizontal ray y = 0 on the interval (—ce, — 1], it is the semicircle y = +/1 — x?
on the interval (—1, 1), and it is the ray y = x on the interval [1, 4-c). The formula for f
specifies that the equation y = 0 applies at the breakpoint —1 [so y = f(—1) = 0], and it
specifies that the equation y = x applies at the breakpoint 1 [so y = f(1) = 1]. The graph
of f is shown in Figure 0.1.10. «

In Figure 0.1.10 the solid dot and open circle at the breakpoint x = 1 serve to emphasize that the point
on the graph lies on the ray and not the semicircle. There is no ambiguity at the breakpoint x = —1
because the two parts of the graph join together continuously there.

» Example 5 Increasing the speed at which air moves over a person’s skin increases
the rate of moisture evaporation and makes the person feel cooler. (This is why we fan
ourselves in hot weather.) The wind chill index is the temperature at a wind speed of 4
mi/h that would produce the same sensation on exposed skin as the current temperature
and wind speed combination. An empirical formula (i.e., a formula based on experimental
data) for the wind chill index W at 32°F for a wind speed of v mi/h is

32, 0<v<3

T 155.628 — 22,0706, 3 <

A computer-generated graph of W(v) is shown in Figure 0.1.11. <«

35

25
20 |-
15
10 -

Wind chill W (°F)

0 Il Il Il Il Il Il Il Il Il Il Il Il | Il J

» Figure 0.1.11 Wind chill versus 0 5 101520 25 30 35 40 45 50 55 60 65 70 75
wind speed at 32°F Wind speed v (mi/h)



One might argue that a physical square
cannot have a side of length zero.
However, it is often convenient mathe-
matically to allow zero lengths, and we
will do so throughout this text where
appropriate.

Range

Domain

A Figure 0.1.12 The projection of
y = f(x) on the x-axis is the set of
allowable x-values for f, and the
projection on the y-axis is the set of
corresponding y-values.

For a review of trigonometry see Ap-
pendix B.
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Il DOMAIN AND RANGE

If x and y are related by the equation y = f(x), then the set of all allowable inputs (x-values)
is called the domain of f, and the set of outputs (y-values) that result when x varies over
the domain is called the range of f. For example, if f is the function defined by the table
in Example 1, then the domain is the set {0, 1, 2, 3} and the range is the set {—1, 3, 4, 6}.

Sometimes physical or geometric considerations impose restrictions on the allowable
inputs of a function. For example, if y denotes the area of a square of side x, then these
variables are related by the equation y = x2. Although this equation produces a unique
value of y for every real number x, the fact that lengths must be nonnegative imposes the
requirement that x > 0.

When a function is defined by a mathematical formula, the formula itself may impose
restrictions on the allowable inputs. For example, if y = 1/x, thenx = 0is notan allowable
input since division by zero is undefined, and if y = /x, then negative values of x are not
allowable inputs because they produce imaginary values for y and we have agreed to
consider only real-valued functions of a real variable. In general, we make the following
definition.

0.1.5 pEFINITION If areal-valued function of a real variable is defined by a formula,
and if no domain is stated explicitly, then it is to be understood that the domain consists
of all real numbers for which the formula yields a real value. This is called the natural
domain of the function.

The domain and range of a function f can be pictured by projecting the graphof y = f(x)
onto the coordinate axes as shown in Figure 0.1.12.

» Example 6 Find the natural domain of

@ f(x)=x? (b) f(x) =1/[(x — D(x —3)]
(¢) f(x) =tanx d f(x) =+vx2—-5x+6

Solution (a). The function f has real values for all real x, so its natural domain is the
interval (—oo, +0).

Solution (b). The function f has real values for all real x, except x = 1 and x = 3,
where divisions by zero occur. Thus, the natural domain is

{x :x#land x # 3} = (—o, 1) U (1, 3) U (3, +x)

Solution (c¢). Since f(x) = tanx = sinx/ cos x, the function f has real values except
where cos x = 0, and this occurs when x is an odd integer multiple of 7r/2. Thus, the natural

domain consists of all real numbers except
n 3m  Sw
x=d—,+—,+—, ...
2 2 2

Solution (d). The function f has real values, except when the expression inside the
radical is negative. Thus the natural domain consists of all real numbers x such that

=5 +6=(x—-3)(x—-2>0
This inequality is satisfied if x < 2 or x > 3 (verify), so the natural domain of f is

(—00,2]U[3, +0) «
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In some cases we will state the domain explicitly when defining a function. For example,
if f(x) = x? is the area of a square of side x, then we can write

y y=X

f(x):xz, x>0

to indicate that we take the domain of f to be the set of nonnegative real numbers (Fig-
X
ure 0.1.13).

B THE EFFECT OF ALGEBRAIC OPERATIONS ON THE DOMAIN
y y=x4x20 Algebraic expressions are frequently simplified by canceling common factors in the nu-
merator and denominator. However, care must be exercised when simplifying formulas for
functions in this way, since this process can alter the domain.

X » Example 7 The natural domain of the function

x> -4
x =2

fx) = )

A Figure 0.1.13

consists of all real x except x = 2. However, if we factor the numerator and then cancel

the common factor in the numerator and denominator, we obtain
f(x):w:xﬂ 3)

x—2

Since the right side of (3) has a value of f(2) =4 and f(2) was undefined in (2), the

algebraic simplification has changed the function. Geometrically, the graph of (3) is the

line in Figure 0.1.14a, whereas the graph of (2) is the same line but with a hole at x = 2,

since the function is undefined there (Figure 0.1.14b). In short, the geometric effect of the

algebraic cancellation is to eliminate the hole in the original graph. «

Sometimes alterations to the domain of a function that result from algebraic simplification
are irrelevant to the problem at hand and can be ignored. However, if the domain must be
preserved, then one must impose the restrictions on the simplified function explicitly. For
example, if we wanted to preserve the domain of the function in Example 7, then we would
have to express the simplified form of the function as

fx)=x4+2, x#2

A Figure 0.1.14
» Example 8 Find the domain and range of

@ f=2+vVx—-1 (b fx)=@&+D/(x—-1)

Solution (a). Since no domain is stated explicitly, the domain of f is its natural domain,

y
sl y=2+Vx-1 [1, +). As x varies over the interval [1, 4+), the value of /x — 1 varies over the interval
L [0, +), so the value of f(x) =2+ +/x — | varies over the interval [2, +o), which is
sl the range of f. The domain and range are highlighted in green on the x- and y-axes in
oL Figure 0.1.15.
1 -
R AR +  Solution (b). The given function f is defined for all real x, except x = 1, so the natural

domain of f is
A Figure 0.1.15 {x :x #1} = (=0, ) U (1, )



A Figure 0.1.16
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To determine the range it will be convenient to introduce a dependent variable

_x+1
Tx—1

y “

Although the set of possible y-values is not immediately evident from this equation, the
graph of (4), which is shown in Figure 0.1.16, suggests that the range of f consists of all
v, except y = 1. To see that this is so, we solve (4) for x in terms of y:

x—1Dy=x+1

xy—y=x+1
xy—x=y+1
xy—D=y+1
y+1
xX=—
y—1

It is now evident from the right side of this equation that y = 1 is not in the range; otherwise
we would have a division by zero. No other values of y are excluded by this equation, so the
range of the function f is {y : y # 1} = (—o0, 1) U (1, +), which agrees with the result
obtained graphically. <

DOMAIN AND RANGE IN APPLIED PROBLEMS
In applications, physical considerations often impose restrictions on the domain and range
of a function.

» Example 9 An open box is to be made from a 16-inch by 30-inch piece of card-
board by cutting out squares of equal size from the four corners and bending up the sides
(Figure 0.1.17a).

(a) Let V be the volume of the box that results when the squares have sides of length x.
Find a formula for V as a function of x.

(b) Find the domain of V.
(c) Use the graph of V given in Figure 0.1.17c to estimate the range of V.

(d) Describe in words what the graph tells you about the volume.

Solution (a). As shown in Figure 0.1.17b, the resulting box has dimensions 16 — 2x by
30 — 2x by x, so the volume V (x) is given by

V(x) = (16 — 2x)(30 — 2x)x = 480x — 92x% + 4x°

800

700 -
600 [~
500 [~
400 [~
300 [
200 [

100

A Figure 0.1.17

H
o R
S
x
N
|
|
|
I
|
|
|
|
I
\5\
|
S
Volume V of box (in3)

@)

} 30—-2x } I I T S B

J
01 2 3 456 7 89
Side x of square cut (in)

(b) ©
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Radar Tracking
6000
5000

3000
2000
1000

Distance D (ft)

|
0 10 20 30 40 50 60
8:05Aa.M. Timet(s) 8:06a.M.
A Figure 0.1.18

N

The circle is squashed because 1
unit on the y-axis has a smaller
length than 1 unit on the x-axis.

A Figure 0.1.19

In applications where the variables on
the two axes have unrelated units (say,
centimeters on the y-axis and seconds
on the x-axis), then nothing is gained
by requiring the units to have equal
lengths; choose the lengths to make
the graph as clear as possible.

Solution (b). The domain is the set of x-values and the range is the set of V-values.
Because x is a length, it must be nonnegative, and because we cannot cut out squares whose
sides are more than 8 in long (why?), the x-values in the domain must satisfy

0<x<8

Solution (c¢). From the graph of V versus x in Figure 0.1.17¢ we estimate that the V-
values in the range satisfy 0<V <725

Note that this is an approximation. Later we will show how to find the range exactly.

Solution (d). The graph tells us that the box of maximum volume occurs for a value of x
that is between 3 and 4 and that the maximum volume is approximately 725 in®. The
graph also shows that the volume decreases toward zero as x gets closer to O or 8, which
should make sense to you intuitively. «

In applications involving time, formulas for functions are often expressed in terms of a
variable r whose starting value is taken to be r = 0.

» Example 10 At 8:05 A.M. a car is clocked at 100 ft/s by a radar detector that is
positioned at the edge of a straight highway. Assuming that the car maintains a constant
speed between 8:05 A.M. and 8:06 A.M., find a function D(z) that expresses the distance
traveled by the car during that time interval as a function of the time 7.

Solution. Tt would be clumsy to use the actual clock time for the variable 7, so let us
agree to use the elapsed time in seconds, starting with = 0 at 8:05 A.M. and ending with
t = 60 at 8:06 A.M. At each instant, the distance traveled (in ft) is equal to the speed of the
car (in ft/s) multiplied by the elapsed time (in s). Thus,

D() =100t, 0<tr=<60

The graph of D versus ¢ is shown in Figure 0.1.18. <«

ISSUES OF SCALE AND UNITS
In geometric problems where you want to preserve the “true” shape of a graph, you must
use units of equal length on both axes. For example, if you graph a circle in a coordinate
system in which 1 unit in the y-direction is smaller than 1 unit in the x-direction, then the
circle will be squashed vertically into an elliptical shape (Figure 0.1.19).

However, sometimes it is inconvenient or impossible to display a graph using units of
equal length. For example, consider the equation

y=x

If we want to show the portion of the graph over the interval —3 < x < 3, then there is
no problem using units of equal length, since y only varies from O to 9 over that interval.
However, if we want to show the portion of the graph over the interval —10 < x < 10, then
there is a problem keeping the units equal in length, since the value of y varies between 0
and 100. In this case the only reasonable way to show all of the graph that occurs over the
interval —10 < x < 10 is to compress the unit of length along the y-axis, as illustrated in
Figure 0.1.20.
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VQUlCK CHECK EXERCISES 0.1  (See page 15 for answers.)

1. Let f(x) =+/x+1+4. 4. The accompanying table gives a 5-day forecast of high and
(a) The natural domainof fis__ | low temperatures in degrees Fahrenheit (°F).
® fB)=— (a) Suppose that x and y denote the respective high and
© f GZ-D=___ low temperature predictions for each of the 5 days. Is
d fx)y=Tifx=_____ y a function of x? If so, give the domain and range of
(e) Therangeof fis— . this function.

2. Line segments in an xy-plane form “letters” as depicted. (b) Suppose that x and y denote the respective low and high

temperature predictions for each of the 5 days. Is y a
function of x? If so, give the domain and range of this

L IMALT

HIGH 75 71 65 70 73

MON TUE WED | THURS | FRI

(a) Ifthe y-axisis parallel to the letter I, which of the letters
represent the graph of y = f(x) for some function f?

(b) If the y-axis is perpendicular to the letter I, which of
the letters represent the graph of y = f(x) for some A Table Ex-4
function f?

LOW 52 56 48 50 52

3. The accompanying figure shows the complete graph of

y = f(x). 5. Let I, w, and A denote the length, width, and area of a
(a) The domain of f is ) rectangle, respectively, and suppose that the width of the
(b) The range of f is ) rectangle is half the length.
(©) f(=3)= (a) If I is expressed as a function of w, then =
@ f (l) — (b) If A is expressed as a function of /, then A =
() Thezsolutions to f(x) = 3 arex = and (c) If wisexpressedas afunctionof A, thenw =
=—3 =
X =
y
2 jp—0
1 -

< Figure Ex-3
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EXERCISE SET 0.1 M Graphing Utility

1. Use the accompanying graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) For what values of x is y = 1?

(b) For what values of x is y = 3?

(c) For what values of y is x = 3?

(d) For what values of x is y < 0?

(e) What are the maximum and minimum values of y and
for what values of x do they occur?

y

-3 -2 -1 0 1 2 3 <Figure Ex-1

2. Use the accompanying table to answer the questions posed
in Exercise 1.

X|-2|-1| 0| 2 3|4 |5 |6

y| 5| 1|-2|7|-1|1 |09

A Table Ex-2

3. Ineach part of the accompanying figure, determine whether
the graph defines y as a function of x.

y y

AN

@) (b)

. T\,
N

© (d)

A Figure Ex-3

4. In each part, compare the natural domains of f and g.

x2+x. _
(@ fx)= P gx) =x
by foy = EENE
x+1

FOCUS ON CONCEPTS

5. The accompanying graph shows the median income in
U.S. households (adjusted for inflation) between 1990
and 2005. Use the graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) When was the median income at its maximum value,

and what was the median income when that occurred?
(b) When was the median income at its minimum value,
and what was the median income when that occurred?
(c) The median income was declining during the 2-year
period between 2000 and 2002. Was it declining
more rapidly during the first year or the second year
of that period? Explain your reasoning.

Median U.S. Household Income in
Thousands of Constant 2005 Dollars

Median U.S. Household Income

Il | |
1990 1995 2000
Source: U.S. Census Bureau, August 2006.
A Figure Ex-5

6. Use the median income graph in Exercise 5 to answer the
following questions, making reasonable approximations
where needed.

(a) What was the average yearly growth of median in-
come between 1993 and 1999?

(b) The median income was increasing during the 6-year
period between 1993 and 1999. Was it increasing
more rapidly during the first 3 years or the last 3
years of that period? Explain your reasoning.

(c) Consider the statement: “After years of decline, me-
dian income this year was finally higher than that of
last year.” In what years would this statement have
been correct?




7. Find £(0), f(2), f(=2), f(3), f(¥/2), and f(31).
1

®) fx)=1{ x’

2x, x <3
8. Find g(3), g(—1), (), g(—1.1), and g(t* — 1).

Jx+1, x>1
3, x <1

(@) f(x)=3x>-2

1
@ g0 ="
X

— (Mﬂﬁz{

4 9-10 Find the natural domain and determine the range of each

function. If you have a graphing utility, use it to confirm that
your result is consistent with the graph produced by your graph-
ing utility. [Note: Setyour graphing utility in radian mode when
graphing trigonometric functions.]

1 X
9. @ fx)=—= (b) F(x) = —
x—3 [x]
(©) glx) =+/x2-3 d) G(x) =+/x2—-2x+5
24
©) h(x) = +—— () He) = [
—sinx x—2

10. (@) f(x) =3 —x
(¢) g(x) =34+ /x
(e) h(x) =3sinx

(b) F(x) =4 —x2
) G(x) =x>+2
(f) H(x) = (sin/x)72

FOCUS ON CONCEPTS

11. (a) Ifyouhadadevice that could record the Earth’s pop-
ulation continuously, would you expect the graph of
population versus time to be a continuous (unbro-
ken) curve? Explain what might cause breaks in the
curve.

(b) Suppose that a hospital patient receives an injection
of an antibiotic every 8 hours and that between in-
jections the concentration C of the antibiotic in the
bloodstream decreases as the antibiotic is absorbed
by the tissues. What might the graph of C versus
the elapsed time ¢ look like?

12. (a) If you had a device that could record the tempera-
ture of a room continuously over a 24-hour period,
would you expect the graph of temperature versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

(b) If you had a computer that could track the number
of boxes of cereal on the shelf of a market contin-
uously over a 1-week period, would you expect the
graph of the number of boxes on the shelf versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

13. A boat is bobbing up and down on some gentle waves.
Suddenly it gets hit by a large wave and sinks. Sketch
a rough graph of the height of the boat above the ocean
floor as a function of time.

0.1 Functions 13

14. A cup of hot coffee sits on a table. You pour in some
cool milk and let it sit for an hour. Sketch a rough graph
of the temperature of the coffee as a function of time.

15-18 As seen in Example 3, the equation x? + y? = 25 does
not define y as a function of x. Each graph in these exercises
is a portion of the circle x> + y> = 25. In each case, determine
whether the graph defines y as a function of x, and if so, give a
formula for y in terms of x.

15. y 16. y

17. y 18. y

>
>

19-22 True-False Determine whether the statement is true or
false. Explain your answer.

19. A curve that crosses the x-axis at two different points cannot
be the graph of a function.

20. The natural domain of a real-valued function defined by a
formula consists of all those real numbers for which the
formula yields a real value.

21. The range of the absolute value function is all positive real
numbers.

22. If g(x) = 1//f(x), then the domain of g consists of all
those real numbers x for which f(x) # 0.

23. Use the equation y = x> — 6x + 8 to answer the following
questions.
(a) For what values of x is y = 0?
(b) For what values of x is y = —10?
(c) For what values of x is y > 0?
(d) Does y have a minimum value? A maximum value? If
so, find them.

24. Usethe equation y = 1 + 4/x to answer the following ques-
tions.
(a) For what values of x is y = 4?
(b) For what values of x is y = 0?
(c) For what values of x is y > 6? (cont.)
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25.

26.
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(d) Does y have a minimum value? A maximum value? If
so, find them.

As shown in the accompanying figure, a pendulum of con-
stant length L makes an angle 6 with its vertical position.
Express the height / as a function of the angle 6.

Express the length L of a chord of a circle with radius 10 cm
as a function of the central angle 8 (see the accompanying
figure).

A Figure Ex-25 A Figure Ex-26

[ 27-28 Express the function in piecewise form without using
absolute values. [Suggestion: It may help to generate the graph
of the function.]

27.
28.

4 29.

i~ 30.

@ f)=Ix[+3x+1 (b) glx)=x|+|x—1]

(@ fx)=3+[2x =5 (b) g(x) =3|x =2| =[x + 1]

As shown in the accompanying figure, an open box is to

be constructed from a rectangular sheet of metal, 8 in by 15

in, by cutting out squares with sides of length x from each

corner and bending up the sides.

(a) Express the volume V as a function of x.

(b) Find the domain of V.

(c) Plot the graph of the function V obtained in part (a) and
estimate the range of this function.

(d) Inwords, describe how the volume V varies with x, and
discuss how one might construct boxes of maximum
volume.

\ 15in \
A Figure Ex-29

Repeat Exercise 29 assuming the box is constructed in the
same fashion from a 6-inch-square sheet of metal.

M 31. A construction company has adjoined a 1000 ft*> rectan-

gular enclosure to its office building. Three sides of the
enclosure are fenced in. The side of the building adjacent
to the enclosure is 100 ft long and a portion of this side is
used as the fourth side of the enclosure. Let x and y be the
dimensions of the enclosure, where x is measured parallel
to the building, and let L be the length of fencing required
for those dimensions.

(a) Find a formula for L in terms of x and y.

(b) Find a formula that expresses L as a function of x alone.
(c) What is the domain of the function in part (b)?

H 32.

i~ 33.

~ 34.

(d) Plot the function in part (b) and estimate the dimensions
of the enclosure that minimize the amount of fencing
required.

As shown in the accompanying figure, a camera is mounted
at a point 3000 ft from the base of a rocket launching pad.
The rocket rises vertically when launched, and the camera’s
elevation angle is continually adjusted to follow the bottom
of the rocket.

(a) Express the height x as a function of the elevation an-
gle 6.

(b) Find the domain of the function in part (a).

(c) Plot the graph of the function in part (a) and use it to
estimate the height of the rocket when the elevation an-
gle is /4 ~ 0.7854 radian. Compare this estimate to
the exact height.

Rocket

<

X |
1 3000 ft ‘
Camera

< Figure Ex-32

A soup company wants to manufacture a can in the shape
of a right circular cylinder that will hold 500 cm? of liquid.
The material for the top and bottom costs 0.02 cent/ cm?,
and the material for the sides costs 0.01 cent/cm?.

(a) Estimate the radius r and the height % of the can that
costs the least to manufacture. [Suggestion: Express
the cost C in terms of r.]

(b) Suppose that the tops and bottoms of radius r are
punched out from square sheets with sides of length
2r and the scraps are waste. If you allow for the cost of
the waste, would you expect the can of least cost to be
taller or shorter than the one in part (a)? Explain.

(c) Estimate the radius, height, and cost of the can in part
(b), and determine whether your conjecture was correct.

The designer of a sports facility wants to put a quarter-mile
(1320 ft) running track around a football field, oriented as
in the accompanying figure on the next page. The football
field is 360 ft long (including the end zones) and 160 ft wide.

The track consists of two straightaways and two semicircles,

with the straightaways extending at least the length of the

football field.

(a) Show that it is possible to construct a quarter-mile track
around the football field. [Suggestion: Find the shortest
track that can be constructed around the field.]

(b) Let L be the length of a straightaway (in feet), and let x
be the distance (in feet) between a sideline of the foot-
ball field and a straightaway. Make a graph of L ver-
sus x.

(cont.)



(c) Use the graph to estimate the value of x that produces
the shortest straightaways, and then find this value of x
exactly.

(d) Use the graph to estimate the length of the longest pos-
sible straightaways, and then find that length exactly.

— e —

| 360 |
A Figure Ex-34

35-36 (i) Explain why the function f has one or more holes
in its graph, and state the x-values at which those holes occur.
(ii) Find a function g whose graph is identical to that of f, but
without the holes.

x+2)x2-1 x% + |x]|
35, fx)=——F—= 36. f(x) =
TO=ye-ny W=
37. In2001 the National Weather Service introduced a new wind
chill temperature (WCT) index. For a given outside temper-

l/ QUICK CHECK ANSWERS 0.1
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ature 7' and wind speed v, the wind chill temperature index
is the equivalent temperature that exposed skin would feel
with a wind speed of v mi/h. Based on a more accurate
model of cooling due to wind, the new formula is

T, 0<v<3
WCT =
35.74 4+ 0.6215T — 35.750910 4 0.4275Tv016, 3 <

where T is the temperature in °F, v is the wind speed in
mi/h, and WCT is the equivalent temperature in °F. Find
the WCT to the nearest degree if 7 = 25°F and

(a v=3mi/h (b)) v=15mi/h (c) v =46mi/h.
Source: Adapted from UMAP Module 658, Windchill, W. Bosch and
L. Cobb, COMAP, Arlington, MA.

38-40 Use the formula for the wind chill temperature index
described in Exercise 37.

38. Find the air temperature to the nearest degree if the WCT is
reported as —60°F with a wind speed of 48 mi/h.

39. Find the air temperature to the nearest degree if the WCT is
reported as —10°F with a wind speed of 48 mi/h.

40. Find the wind speed to the nearest mile per hour if the WCT
is reported as 5°F with an air temperature of 20°F.

1. (@) [=1,+%) (b) 6 (c) [t[+4 (d) 8 () [4, +)
€ —3: =3

) w=+A/2

m NEW FUNCTIONS FROM OLD

2. (e M (b) I
4. (a) yes; domain: {65, 70,71, 73, 75}; range: {48, 50, 52, 56} (b) no

3. (@) [-3,3) (b) [-2,2] (¢) =1 (d) 1
5. () l=2w (b) A=1%/2

Just as numbers can be added, subtracted, multiplied, and divided to produce other
numbers, so functions can be added, subtracted, multiplied, and divided to produce other
Junctions. In this section we will discuss these operations and some others that have no
analogs in ordinary arithmetic.

H ARITHMETIC OPERATIONS ON FUNCTIONS
Two functions, f and g, can be added, subtracted, multiplied, and divided in a natural way
to form new functions f + g, f — g, fg, and f/g. For example, f + g is defined by the

formula

(f +8)) = flx) + g(x) ey

which states that for each input the value of f 4 g is obtained by adding the values of
f and g. Equation (1) provides a formula for f + g but does not say anything about the
domain of f + g. However, for the right side of this equation to be defined, x must lie in
the domains of both f and g, so we define the domain of f + g to be the intersection of
these two domains. More generally, we make the following definition.



16 Chapter 0 / Before Calculus

If f is a constant function, that is,
f(x) = ¢ forall x, then the product of
f and g is cg, so multiplying a func-
tion by a constant is a special case of
multiplying two functions.

0.2.1 peFINITION Given functions f and g, we define

(f +8)x) = fx) +gx)

(f =)&) = f(x) —gx)

(f&)(x) = f(x)g(x)
(f/8)(x) = f(x)/g(x)

For the functions f + g, f — g, and fg we define the domain to be the intersection
of the domains of f and g, and for the function f/g we define the domain to be the
intersection of the domains of f and g but with the points where g(x) = 0 excluded (to
avoid division by zero).

» Example 1 Let
fx)=14++vx—2 and gkx)=x-3
Find the domains and formulas for the functions f + g, f — g, fg, f/g,and 7f.

Solution. First, we will find the formulas and then the domains. The formulas are
(f+X)=f()+gx)=0+vVx=2)+x—=3)=x—-2+~vx—=2 (2)
(f-9)=fx)—g)=0++vx-2)—-x—-3)=4—x+vVx-2 (3

(fe)x) = f(x)gx) = (1 +~vx —2)(x —3) (€]
1+Vx—2

(f19)0) = f /gy = — 5=

THx) =T7fx) =T+ Tvx =2 (6)

The domains of f and g are [2, +o) and (—oo, +0), respectively (their natural domains).
Thus, it follows from Definition 0.2.1 that the domains of f 4+ g, f — g, and fg are the
intersection of these two domains, namely,

[2, +00) N (=00, +-00) = [2, +00) @)
Moreover, since g(x) = 0 if x = 3, the domain of f/g is (7) with x = 3 removed, namely,
[2,3) U3, +x)

Finally, the domain of 7f is the same as the domain of f. <«

&)

We saw in the last example that the domains of the functions f + g, f — g, fg.and f/g
were the natural domains resulting from the formulas obtained for these functions. The
following example shows that this will not always be the case.

» Example 2 Show that if f(x) = /x, g(x) = +/x, and h(x) = x, then the domain of
fg is not the same as the natural domain of 4.
Solution. The natural domain of A(x) = x is (—oo, +c0). Note that
(fe)(x) = Vx/x =x = h(x)
on the domain of fg. The domains of both f and g are [0, +), so the domain of fg is
[0, +20) N[0, +00) = [0, +20)



Although the domain of fog may
seem complicated at first glance, it
makes sense intuitively: To compute
f(g(x)) one needs x in the domain
of g to compute g(x), and one needs
g(x) in the domain of f to compute

S (g ().

Note that the functions fog and go f
in Example 3 are not the same. Thus,
the order in which functions are com-
posed can (and usually will) make a dif-
ference in the end result.

0.2 New Functions from Old 17

by Definition 0.2.1. Since the domains of fg and & are different, it would be misleading to
write (fg)(x) = x without including the restriction that this formula holds only for x > 0.
<

COMPOSITION OF FUNCTIONS

We now consider an operation on functions, called composition, which has no direct analog
in ordinary arithmetic. Informally stated, the operation of composition is performed by
substituting some function for the independent variable of another function. For example,
suppose that

fx) = x> and gx)=x+1

If we substitute g(x) for x in the formula for f, we obtain a new function
f(g)) = (g())* = (x + 1)’

which we denote by fog. Thus,

(fog)(x) = f(g(x) = (g(x)* = (x + 1)’

In general, we make the following definition.

0.2.2 pEFINITION Given functions f and g, the composition of f with g, denoted
by fog, is the function defined by

(fog)(x) = f(g(x))

The domain of fog is defined to consist of all x in the domain of g for which g(x) is
in the domain of f.

» Example 3 Let f(x) = x*> + 3 and g(x) = /x. Find
(@ (fog)x)  (b) (gof)x)

Solution (a). The formula for f(g(x)) is

flex) =[P +3=Wx)>+3=x+3

Since the domain of g is [0, 4+cc) and the domain of f is (—oo, 4+0), the domain of fog
consists of all x in [0, 4+) such that g(x) = /x lies in (—o, +); thus, the domain of
fogis[0, 4o0). Therefore,

(fee)x)=x+3, x=0

Solution (b). The formula for g( f(x)) is

() = V() = Va? +3

Since the domain of f is (—o, +0) and the domain of g is [0, o), the domain of go f
consists of all x in (—oo, 4-0) such that f(x) = x2 + 3 lies in [0, 4+c0). Thus, the domain
of go f is (—o, +). Therefore,

(8o f)x) =vx*+3

There is no need to indicate that the domain is (—oo, +), since this is the natural domain
of v/x2 +3. «
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Compositions can also be defined for three or more functions; for example, (fogoh)(x)
is computed as
P (fogoh)(x) = f(g(h(x)))
In other words, first find A (x), then find g(h(x)), and then find f(g(h(x))).

m Find (fogoh)(x) if
fx)=+x, gx)=1/x, hx) =x>

Solution.

(fogoh)(x) = f(g(h(x))) = f(g(x) = f(1/x>) = V1/x3 = 1/x? «

EXPRESSING A FUNCTION AS A COMPOSITION
Many problems in mathematics are solved by “decomposing” functions into compositions
of simpler functions. For example, consider the function % given by

h(x) = (x + 1)?

To evaluate h(x) for a given value of x, we would first compute x + 1 and then square the
result. These two operations are performed by the functions

gx)=x+1 and f(x)=x>
We can express & in terms of f and g by writing
h() = (x + 1) = [g0)F = f(g(x)
so we have succeeded in expressing & as the composition 1 = fog.

The thought process in this example suggests a general procedure for decomposing a
function 4 into a composition 4 = fog:

e Think about how you would evaluate /(x) for a specific value of x, trying to break
the evaluation into two steps performed in succession.

e The first operation in the evaluation will determine a function g and the second a
function f.

e The formula for / can then be written as h(x) = f(g(x)).
For descriptive purposes, we will refer to g as the “inside function” and f as the “outside

function” in the expression f(g(x)). The inside function performs the first operation and
the outside function performs the second.

» Example 5 Express sin(x?) as a composition of two functions.

Solution. To evaluate sin(x3), we would first compute x3 and then take the sine, so
g(x) = x3 is the inside function and f(x) = sin x the outside function. Therefore,

sin(x?) = f(g(x)) g(x) = x3 and f(x) = sinx | <

Table 0.2.1 gives some more examples of decomposing functions into compositions.



REMARK
Car Sales in Millions
40
36 /_/\/_ _
Total
32
28 New
24
0 NSl
12
Used
4
1995 2000 2005
Source: NADA.
A Figure 0.2.1

Use the technique in Example 6 to
sketch the graph of the function

!

> Figure 0.2.2
Add the y-coordinates of 4/x and 1/x to
obtain the y-coordinate of /x + 1/x.
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Table 0.2.1
COMPOSING FUNCTIONS
9(x) f(x)
FUNCTION  INSIDE OUTSIDE COMPOSITION
(x2+ )10 x2+1 x10 (x2+ D)X = f(g(x)
sin®x sinx x3 sin®x = f(g(x))
tan (x5) x5 tan x tan (x%) = f(g(x))
V4 — 3X 4-3x VX V4 - 3x = f(g(x))
8+ VX 8+x 8+x = f(g(x))
1 1 1 _
x+1 x+1 X x+1- 190

There is always more than one way to express a function as a composition. For example, here are two
ways to express (x* + 1)!° as a composition that differ from that in Table 0.2.1:

@+ D" = [+ D’P = fg(x)

(24 D0 =167 + 1D = f(g(x)

g(x) = (x* + 1)? and f(x) = x°

gx) = (x2+ 1)3 and f(x) = x'0/3

NEW FUNCTIONS FROM OLD

The remainder of this section will be devoted to considering the geometric effect of perform-
ing basic operations on functions. This will enable us to use known graphs of functions to
visualize or sketch graphs of related functions. For example, Figure 0.2.1 shows the graphs
of yearly new car sales N (f) and used car sales U () over a certain time period. Those
graphs can be used to construct the graph of the total car sales

T =N@+U®)

by adding the values of N(#) and U(¢) for each value of . In general, the graph of
y = f(x) 4+ g(x) can be constructed from the graphs of y = f(x) and y = g(x) by adding
corresponding y-values for each x.

» Example 6 Referring to Figure 0.1.4 for the graphs of y = 4/x and y = 1/x, make a
sketch that shows the general shape of the graph of y = /x + 1/x for x > 0.

Solution. To add the corresponding y-values of y = /x and y = 1/x graphically, just
imagine them to be “stacked” on top of one another. This yields the sketch in Figure 0.2.2.
<

VX + 1Ux

1/xI X
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Il TRANSLATIONS
Table 0.2.2 illustrates the geometric effect on the graph of y = f(x) of adding or subtracting
a positive constant ¢ to f or to its independent variable x. For example, the first result in the
table illustrates that adding a positive constant ¢ to a function f adds c to each y-coordinate
of its graph, thereby shifting the graph of f up by c units. Similarly, subtracting ¢ from f
shifts the graph down by ¢ units. On the other hand, if a positive constant ¢ is added to x,
then the value of y = f(x 4+ ¢) at x — c is f(x); and since the point x — c is ¢ units to the
left of x on the x-axis, the graph of y = f(x 4 ¢) must be the graph of y = f(x) shifted
left by ¢ units. Similarly, subtracting ¢ from x shifts the graph of y = f(x) right by ¢ units.

Table 0.2.2
TRANSLATION PRINCIPLES
OPERATION ON | Add apositive Subtract a positive Add apositive Subtract a positive
y="f(x) constant ¢ to f(x) constant ¢ from f(x) constant ¢ to x constant ¢ from x
NEW EQUATION | y=f(X)+c y=f(x)—c y =f(x+c) y=f(x-c)
GEOMETRIC Translates the graph of Translates the graph of Translates the graph of Trandlates the graph of
EFFECT y = f(X) up c units y = f(x) down ¢ units y = f(x) left ¢ units y = f(X) right ¢ units
Yy =x2s2 y y y
T\/I ) yl=x2 =(x+22y=x2 , . y7x2y=(x—2)2

\ = 2 \ = 2 —

| 2 /y X \ //Y X7-2 Y / Y /
EXAMPLE \\ / X . \\ 7, X o x \\ 7 X

\/ -2 <« — 2
-2

w
—
<
©
x

VX

y

y
3 ]E
L1 L0

P 3

y=Vx-3

12

Solution.

» Example 7 Sketch the graph of
(@ y=+x-3

» Example 8 Sketch the graph of y = x> — 4x + 5.

y
3
Solution.
X
| I I S S |
-3 F 6
y=Nx+3

A Figure 0.2.3

y=(>—dx+4)—44+5=(x -2 +1

Completing the square on the first two terms yields

(b) y=+/x+3

Before proceeding to the next examples, it will be helpful to review the graphs in Fig-
ures 0.1.4 and 0.1.9.

Using the translation principles given in Table 0.2.2, the graph of the equation
y = +/x — 3 can be obtained by translating the graph of y = 4/x right 3 units. The graph of
y = +/x + 3 can be obtained by translating the graph of y = \/x left 3 units (Figure 0.2.3).

|

(see Web Appendix H for a review of this technique). In this form we see that the graph
can be obtained by translating the graph of y = x? right 2 units because of the x — 2, and
up 1 unit because of the +1 (Figure 0.2.4). <«
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<

-5 2 5

=(x-22%+1
» Figure 0.2.4 y=( )

Il REFLECTIONS
The graph of y = f(—x) is the reflection of the graph of y = f(x) about the y-axis because
the point (x, y) on the graph of f(x) is replaced by (—x, y). Similarly, the graph of
y = — f(x) is the reflection of the graph of y = f(x) about the x-axis because the point
(x, ) on the graph of f(x) is replaced by (x, —y) [the equation y = — f(x) is equivalent
to —y = f(x)]. This is summarized in Table 0.2.3.

Table 0.2.3
REFLECTION PRINCIPLES
OPERATION ON
y=f(x) Replace x by —x Multiply f(x) by -1
NEW EQUATION | Y = f(—X) y =—f(x)
GEOMETRIC Reflects the graph of Reflects the graph of
EFFECT y = f(x) about they-axis y = f(x) about the x-axis
y y
EXAMPLE \\\\\\\\\\\\X \\\\\\\\\\\\5
-6 6 —6 6
-3 -3 Y= —Vx

» Example 9 Sketch the graph of y = /2 — x.

Solution. Using the translation and reflection principles in Tables 0.2.2 and 0.2.3, we
can obtain the graph by a reflection followed by a translation as follows: First reflect the
graph of y = J/x about the y-axis to obtain the graph of y = J/—x, then translate this graph
right 2 units to obtain the graph of the equation y = &/—(x — 2) = /2 — x (Figure 0.2.5).

X X
- 11| - - 1 > 1 11| 1 11| - - 11| 1 - 1

-10 10 -10 10 -10 S~ 10

P Figure 0.2.5
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» Example 10 Sketch the graph of y = 4 — |x —2|.

Solution. The graph can be obtained by a reflection and two translations: First translate
the graph of y = |x| right 2 units to obtain the graph of y = |[x — 2|; then reflect this graph
about the x-axis to obtain the graph of y = —|x — 2|; and then translate this graph up 4
units to obtain the graph of the equation y = —|x — 2| +4 =4 — |x — 2| (Figure 0.2.6).
<
y y Y y
8| 8 8| 8|
I I : | X 11 1 | L1 | : ) T I L1 /7 L1 L1 X
-8 B 8 -6 B 10 -6 10 -6 B Y’
8} 8| 8} 8}
|| y=Ix-2| =[x - 2| Ix - 2|
A Figure 0.2.6

B STRETCHES AND COMPRESSIONS

Describe the geometric effect of mul-
tiplying a function f by a negative
constant in terms of reflection and
stretching or compressing. What is the
geometric effect of multiplying the in-
dependent variable of a function f by
a negative constant?

Multiplying f(x) by a positive constant ¢ has the geometric effect of stretching the graph
of y = f(x) in the y-direction by a factor of ¢ if ¢ > 1 and compressing it in the y-
direction by a factor of 1/c¢ if 0 < ¢ < 1. For example, multiplying f(x) by 2 doubles each
y-coordinate, thereby stretching the graph vertically by a factor of 2, and multiplying by %
cuts each y-coordinate in half, thereby compressing the graph vertically by a factor of 2.
Similarly, multiplying x by a positive constant ¢ has the geometric effect of compressing
the graph of y = f(x) by a factor of ¢ in the x-direction if ¢ > 1 and stretching it by a factor
of 1/cif 0 < ¢ < 1. [If this seems backwards to you, then think of it this way: The value
of 2x changes twice as fast as x, so a point moving along the x-axis from the origin will
only have to move half as far for y = f(2x) to have the same value as y = f(x), thereby
creating a horizontal compression of the graph.] All of this is summarized in Table 0.2.4.

Table 0.2.4
STRETCHING AND COMPRESSING PRINCIPLES
OPERATION ON | Multiply f(x) by ¢ Multiply f(x) by ¢ Multiply x by ¢ Multiply x by ¢
y="f(x) (c>1) (0<c<1) (c>1) (0<c<1)
NEW EQUATION | Y = cf(x) y = cf(x) y = f(cx) y = f(cx)
Stretches the graph of Compresses the graph of Compresses the graph of Stretches the graph of

GEOMETRIC

EFFECT y = f(x) vertically by a y = f(x) vertically by a y = f(x) horizontally by a  y = f(x) horizontally by a
factor of ¢ factor of 1/c factor of ¢ factor of 1/c
y y y
2 y = 2Cosx |y =cosx B 5 L
1\ _ cosx _ 1|y = cosx ‘y/:cos X 1 y=cos%x
EXAMPLE % N\ %W T I N X

/ =
> SN
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B SYMMETRY

Explain why the graph of a nonzero
function cannot be symmetric about
the x-axis.

> Figure 0.2.7

A Figure 0.2.8

Figure 0.2.7 illustrates three types of symmetries: symmetry about the x-axis, symmetry
about the y-axis, and symmetry about the origin. As illustrated in the figure, a curve is
symmetric about the x-axis if for each point (x, y) on the graph the point (x, —y) is also
on the graph, and it is symmetric about the y-axis if for each point (x, y) on the graph
the point (—x, y) is also on the graph. A curve is symmetric about the origin if for each
point (x, y) on the graph, the point (—x, —y) is also on the graph. (Equivalently, a graph is
symmetric about the origin if rotating the graph 180° about the origin leaves it unchanged.)
This suggests the following symmetry tests.

y y y
xy) XNE——FXY) xy)
//
1 X X s X
i gz
Ve
e
(x,—y) (=% -y)
Symmetric about Symmetric about Symmetric about
the x-axis the y-axis the origin

0.2.3 THEOREM (Symmetry Tests)

(@) A plane curve is symmetric about the y-axis if and only if replacing x by —x in its
equation produces an equivalent equation.

(b) A plane curve is symmetric about the x-axis if and only if replacing y by —y in its
equation produces an equivalent equation.

(¢) A plane curve is symmetric about the origin if and only if replacing both x by —x
and y by —y in its equation produces an equivalent equation.

» Example 11 Use Theorem 0.2.3 to identify symmetries in the graph of x = y.

Solution. Replacing y by —y yields x = (—y)?, which simplifies to the original equation
x = y>. Thus, the graph is symmetric about the x-axis. The graph is not symmetric about
the y-axis because replacing x by —x yields —x = y?, which is not equivalent to the original
equation x = y2. Similarly, the graph is not symmetric about the origin because replacing x
by —x and y by —y yields —x = (—y)?, which simplifies to —x = y?, and this is again not
equivalent to the original equation. These results are consistent with the graph of x = y?
shown in Figure 0.2.8. <«

EVEN AND ODD FUNCTIONS
A function f is said to be an even function if

f(=x) = f(x) (®)
and is said to be an odd function if
f=x) =—fx) )

Geometrically, the graphs of even functions are symmetric about the y-axis because replac-
ing x by —x in the equation y = f(x) yields y = f(—x), which is equivalent to the original
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equation y = f(x) by (8) (see Figure 0.2.9). Similarly, it follows from (9) that graphs of odd
functions are symmetric about the origin (see Figure 0.2.10). Some examples of even func-

tions are x2, x*, x°, and cos x; and some examples of odd functions are x3, x>, x7, and sin x.

Y Ay

A Figure 0.2.9 This is the graph of an A Figure 0.2.10 This is the graph of
even function since f(—x) = f(x). an odd function since f(—x) = — f(x).

VQU]CK CHECK EXERCISES 0.2  (See page 27 for answers.)

1. Let f(x) = 3./x — 2 and g(x) = |x|. In each part, give the 3. The graph of y = 1 + (x — 2)?> may be obtained by shift-
formula for the function and state the corresponding domain. ing the graphof y = x> (left/right) by
(@ f+g — Domain: unit(s) and then shifting thisnew graph_______ (up/down)
® f—g:— Domain: by unit(s).
© fg___ Domain: ____ 4. Let
d f/g:—__ Domain: ______ x+1, —2<x<0
2. Let f(x) =2 — x? and g(x) = /x. In each part, give the f) = Ix —1], 0<x<2
formula for the composition and state the corresponding
domain. (a) The letter of the alphabet that most resembles the graph
(@) fog:i_—__ Domain: of fis— .
(b) go f: Domain: (b) Is f an even function?
EXERCISE SET 0.2 P Graphing Utility
3. The graph of a function f is shown in the accompanying
1. The graph of a function f is shown in the accompanying figure. Sketch the graphs of the following equations.
figure. Sketch the graphs of the following equations. @ y=fx+1D (b) y = f(2x)
(@ y=f(x) 1 ® y=fx—1) © y=1f@) ) y=1-f@)
© y=3f() ) y=f(=3x) y
y i

ZANEE

ol -1 / 3
/ < Figure Ex-3

-1 2 4
< Figure Ex-1

. Use the graph in Exercise 3 to sketch the graph of the
equation y = f(|x|).

2. Use the graph in Exercise 1 to sketch the graphs of the [~] 5-24 Sketch the graph of the equation by translating, reflect-

following equations. ing, compressing, and stretching the graph of y = x2, y = J/x,
@ y=—f(=x) (b) y=f2-x) y =1/x,y = |x|, or y = Jx appropriately. Then use a graph-
©y=1-72-x) d) y=3f@2x) ing utility to confirm that your sketch is correct.




5. y=—2(x+1>-3 6. y=1(x—3)%+2
7.y =x*>+6x 8.y:%(x2—2x+3)
9. y=3—-Vx+1 10. y=14++/x—4
ll.y:%ﬁ—i-l 12. y = —/3x
1 1
13. y = 14. y =
R YT
1 x—1
15. y =2 - 16. y =
Y x+1 Y X
17. y=|x+2| -2 18. y=1—[x -3
19. y=2x — 1| +1 20. y =+/x*—4x+4
2. y=1-23x 2. y=x—-2—

23 y=2+Ix+1 24. y+ Jx—2=0
25. (a) Sketch the graph of y = x + |x| by adding the corre-
sponding y-coordinates on the graphs of y = x and
y = lx|.
(b) Express the equation y = x + |x| in piecewise form
with no absolute values, and confirm that the graph you
obtained in part (a) is consistent with this equation.

[ 26. Sketch the graph of y = x + (1/x) by adding correspond-

ing y-coordinates on the graphs of y = x and y = 1/x. Use
a graphing utility to confirm that your sketch is correct.

27-28 Find formulas for f + g, f — g, fg,and f/g, and state
the domains of the functions.

27. f(x) =2/x—1, gx) =/x —1
1
8 f(0) = g s = ¢

29. Let f(x) = +/x and g(x) = x> + 1. Find
(@) f(g2) () g(f4) (©) f(f(16))

(d) g(g(0)) (&) f2+h) () g3+ h).
30. Let g(x) = /x. Find
(@) g(15S +2) (b) g(v/x+2) (c)3g(5x)
(d 200 (e) g(gx)) (f) (g(x)*—g(x?)
(2) g(1/yx) (h) g(x—=DH (@) gx+h).

31-34 Find formulas for fog and go f, and state the domains
of the compositions

31. f(x) = x? g(x) J1—x
32, f(x) =+/x—3, gx) =+/x2+3
B f0) = g =

4. f(x) = T2 glx) =

35-36 Find a formula for fogoh.

35. f(x)=x2+1, gix) = l h(x) = x3

VX, h(x) = =

><

36. f(x)=———, glx) =
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37-42 Express f as a composition of two functions; that is,
find g and 4 such that f = goh. [Note: Each exercise has more
than one solution. ]

37. (@) f(x)=+x+2 (b) f(x)=|x2—3x+5]|
38. (@) f(x)=x*+1 ) f()=—

— qn? -
39. (a) f(x) =sin“x ®d) fx)= ST cosx
40. (a) f(x) =3sin(x?) (b) f(x) =3sin*x +4sinx
1. () fx) = (1+sin@d)’  b) f0)=V1-Jx

1

42. (@) f(x) = T—2 (®) f(x) =15+ 2x|

43-46 True-False Determine whether the statement is true or
false. Explain your answer.

43. The domain of f + g is the intersection of the domains of
f and g.

44. The domain of f o g consists of all values of x in the domain
of g for which g(x) # 0.

45. The graph of an even function is symmetric about the y-axis.

46. The graph of y = f(x 4 2) 4 3 is obtained by translating
the graph of y = f(x) right 2 units and up 3 units.

FOCUS ON CONCEPTS

47. Use the data in the accompanying table to make a plot
of y = f(g(x)).

X |-3|-2|-1| O
fx)|-4|-3|-2|-1| 0 1
gx)|-1| o 1| 2| 3 |-2]|-3

A Table Ex-47

48. Find the domain of go f for the functions f and g in
Exercise 47.

49. Sketch the graph of y = f(g(x)) for the functions
graphed in the accompanying figure.

< Figure Ex-49

50. Sketch the graph of y = g(f(x)) for the functions
graphed in Exercise 49.

51. Use the graphs of f and g in Exercise 49 to esti-
mate the solutions of the equations f(g(x)) =0 and

g(f(x)) =0.
52. Use the table given in Exercise 47 to solve the equations

f(g(x)) =0and g(f(x)) =0.
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53-56 Find

Jx+h) — fx) fw) — f(x)

and
h w—Xx
Simplify as much as possible.
53. f(x)=3x*-5 54. f(x) = x*+ 6x
55. f(x)=1/x 56. f(x)=1/x?
57. Classify the functions whose values are given in the accom-
panying table as even, odd, or neither.

x -3 -2 |-1|0|1|2]3

f)| 5| 3| 2 1
g)| 4 | 1|20 | 2 |-1]|-4
hx)| 2 |-5 | 8 |-2 | 8

A Table Ex-57
58. Complete the accompanying table so that the graph of
y = f(x) is symmetric about

(a) the y-axis

X |-3|-2|-1| 0| 1| 2| 3

(b) the origin.

fo| 1 -1/ 0 -5

A Table Ex-58
59. The accompanying figure shows a portion of a graph. Com-
plete the graph so that the entire graph is symmetric about
(a) the x-axis (b) the y-axis (c) the origin.
60. The accompanying figure shows a portion of the graph of a
function f. Complete the graph assuming that
(a) f is an even function (b)y f is an odd function.

y

A Figure Ex-59 A Figure Ex-60

61-62 Classify the functions graphed in the accompanying fig-
ures as even, odd, or neither.

61. y y
X X
@) (b)
A Figure Ex-61
62. AY \A y
L X \ X

(@) (b)

A Figure Ex-62

63. In each part, classify the function as even, odd, or neither.

@ f(x)=x* b) fx) =x°
(© fx) = Ix| d) fx)=x+1

_rox f =2
(e f(x)_l+x2 ) fx) =

64. Suppose that the function f has domain all real numbers.
Determine whether each function can be classified as even
or odd. Explain.

J&x) + f(=x) J(x) = f(=x)
(@) g(x) = — s (b) h(x) = —

65. Suppose that the function f has domain all real numbers.
Show that f can be written as the sum of an even function
and an odd function. [Hint: See Exercise 64.]

66-67 Use Theorem 0.2.3 to determine whether the graph has
symmetries about the x-axis, the y-axis, or the origin.

66. (a) x =5y>+9 (b) x* —2y*>=3

() xy=35
67. (@) x* =2y +y ) y=-——
2 3+X2
© y =Ix|-5

[ 68-69 (i) Use a graphing utility to graph the equation in the first

quadrant. [Note: To do this you will have to solve the equation
for y in terms of x.] (ii) Use symmetry to make a hand-drawn
sketch of the entire graph. (iii) Confirm your work by generating
the graph of the equation in the remaining three quadrants.

68. 9x2 + 4y = 36 69. 4x2 + 16y* = 16

[~ 70. The graph of the equation x> 4+ y2/3 = 1, which is shown

in the accompanying figure, is called a four-cusped hypo-

cycloid.

(a) Use Theorem 0.2.3 to confirm that this graph is sym-
metric about the x-axis, the y-axis, and the origin.

(b) Find a function f whose graph in the first quadrant
coincides with the four-cusped hypocycloid, and use a
graphing utility to confirm your work.

(c) Repeat part (b) for the remaining three quadrants.

y

Four-cusped hypocycloid
ped vpocy <Figure Ex-70

71. The equation y = | f(x)| can be written as
B { f&), fx)=0

| -re). f@) <o
which shows that the graph of y = | f(x)| can be obtained
from the graph of y = f(x) by retaining the portion that lies



on or above the x-axis and reflecting about the x-axis the
portion that lies below the x-axis. Use this method to obtain
the graph of y = |2x — 3| from the graph of y = 2x — 3.

72-73 Use the method described in Exercise 71.
72. Sketch the graph of y = |1 — x2|.

73. Sketch the graph of
(@) f(x) =]cosx|
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74. The greatest integer function, |x], is defined to be the
greatest integer that is less than or equal to x. For exam-
ple, [2.7] =2, |—2.3] = —3,and |4] = 4. In each part,
sketch the graph of y = f(x).

(@ flx)=|x] (b) f(x) = [x*]
© fx)=[x)? (d) f(x)=[sinx]

75. Is it ever true that fog = go f if f and g are nonconstant
functions? If not, prove it; if so, give some examples for

(b) f(x) =cosx + |cosx]|. which it is true.

VQUICK CHECK ANSWERS 0.2

L@ (f+)=3J/x=2+x; x>0 () (f—gx)=3/r—2—x; x>0 (c) (fo)(x) =3x2—2x; x>0

3 -2
) (f/g)(x) = f%
3. right; 2; up; 1

;x>0 2. (fo))=2—x; x>0 (b) (gof)(x) =v2—x% —v2=<x <2

4. (a) W (b) yes

m FAMILIES OF FUNCTIONS

©.0)

Functions are often grouped into families according to the form of their defining formulas
or other common characteristics. In this section we will discuss some of the most basic
families of functions.

B FAMILIES OF CURVES
The graph of a constant function f(x) = c is the graph of the equation y = ¢, which is
y=c¢ the horizontal line shown in Figure 0.3.1a. If we vary c, then we obtain a set or family of

horizontal lines such as those in Figure 0.3.15.
Constants that are varied to produce families of curves are called parameters. For

@

example, recall that an equation of the form y = mx 4 b represents a line of slope m and
y-intercept b. If we keep b fixed and treat m as a parameter, then we obtain a family of
lines whose members all have y-intercept b (Figure 0.3.2a), and if we keep m fixed and
treat b as a parameter, we obtain a family of parallel lines whose members all have slope m
(Figure 0.3.2b).

/

==

A Figure 0.3.1

(b)

The familyy = mx+b
(b fixed and m varying)

The familyy = mx+b
(m fixed and b varying)

(@ (b)

> Figure 0.3.2
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Il POWER FUNCTIONS; THE FAMILY y = x"
A function of the form f(x) = x?, where p is constant, is called a power function. For the
moment, let us consider the case where p is a positive integer, say p = n. The graphs of
the curves y = x" forn = 1, 2, 3, 4, and 5 are shown in Figure 0.3.3. The first graph is the
line with slope 1 that passes through the origin, and the second is a parabola that opens up
and has its vertex at the origin (see Web Appendix H).

y Yy=x y y=x y y=x y y=x y y=x°

1+ 1+ 1t 1t 1+

1 1 § 1 1 § 1 1 X 1 1 X 1 1 é
-1 1 -1 1 -1 1 -1 1 -1 1
-1+ -1+ -1t -1+ -1+
A Figure 0.3.3
For n > 2 the shape of the curve y = x" depends on whether n is even or odd (Fig-
ure 0.3.4):

e For even values of n, the functions f(x) = x" are even, so their graphs are symmetric
about the y-axis. The graphs all have the general shape of the graph of y = x2, and
each graph passes through the points (—1, 1), (0, 0), and (1, 1). As n increases, the
graphs become flatter over the interval —1 < x < 1 and steeper over the intervals
x>landx < —1.

e For odd values of n, the functions f(x) = x" are odd, so their graphs are symmetric
about the origin. The graphs all have the general shape of the curve y = x3, and
each graph passes through the points (—1, —1), (0, 0), and (1, 1). As n increases,
the graphs become flatter over the interval —1 < x < 1 and steeper over the intervals
x>1landx < —1.

— y5
y ARG
cy=X y=X-o
1 -
! / ! X
-1 1
| -1+
-1
The familyy = x" The familyy = x"
> Figure 0.3.4 (n even) (n odd)
REMARK | The flattening and steepening effects can be understood by considering what happens when a number

x is raised to higher and higher powers: If —1 < x < 1, then the absolute value of x" decreases as
n increases, thereby causing the graphs to become flatter on this interval as n increases (try raising 2
or —1 to higher and higher powers). On the other hand, if x > 1 or x < —1, then the absolute value
of x" increases as n increases, thereby causing the graphs to become steeper on these intervals as n
increases (try raising 2 or —2 to higher and higher powers).



By considering the value of 1/x" for a
fixed x as n increases, explain why the
graphs become flatter or steeper as de-
scribed here for increasing values of n.

B THE FAMILY y =x™"
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If p is a negative integer, say p = —n, then the power functions f(x) = x” have the form
f(x) =x" = 1/x". Figure 0.3.5 shows the graphs of y = 1/x and y = 1/x2. The graph
of y = 1/x is called an equilateral hyperbola (for reasons to be discussed later).

As illustrated in Figure 0.3.5, the shape of the curve y = 1/x" depends on whether 7 is

even or odd:

* For even values of n, the functions f(x) = 1/x" are even, so their graphs are sym-
metric about the y-axis. The graphs all have the general shape of the curve y = 1/x2,
and each graph passes through the points (—1, 1) and (1, 1). As n increases, the
graphs become steeper over the intervals —1 < x < 0 and 0 < x < 1 and become
flatter over the intervals x > 1 and x < —1.

* For odd values of n, the functions f(x) = 1/x" are odd, so their graphs are symmetric
about the origin. The graphs all have the general shape of the curve y = 1/x, and

each graph passes through the points (1, 1) and (—1, —1).

As n increases, the

graphs become steeper over the intervals —1 < x < 0 and 0 < x < 1 and become
flatter over the intervals x > 1 and x < —1.

¢ For both even and odd values of n the graph y = 1/x" has a break at the origin (called
a discontinuity), which occurs because division by zero is undefined.

11

(71! 1)

y y=1x3
y= 1Ux4.
y:]jxe.

Tyy = 1/x3.

y
y = 1x
(€Y
X
(-L-1
A Figure 0.3.5
Table 0.3.1
x| 08 |1/25| 4 |625|10
y[625|5 2 |125| 0.8 |05

INVERSE PROPORTIONS

The family y = 1/x"
(n even)

-1-D

The family y = 1/x"

(n odd)

Recall that a variable y is said to be inversely proportional to a variable x if there is a
positive constant &, called the constant of proportionality, such that

y==
X

ey

Since k is assumed to be positive, the graph of (1) has the same shape as y = 1/x but is
compressed or stretched in the y-direction. Also, it should be evident from (1) that doubling

x multiplies y by 3, tripling x multiplies y by 1, and so forth.

Equation (1) can be expressed as xy = k, which tells us that the product of inversely
proportional variables is a positive constant. This is a useful form for identifying inverse
proportionality in experimental data.

» Example 1

Table 0.3.1 shows some experimental data.

(a) Explain why the data suggest that y is inversely proportional to x.

(b) Express y as a function of x.

(c) Graph your function and the data together for x > O.
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y
y=x
1,1 X
(@)
y
y=3x
1,1 X
(b)
y
y=x
x N
y=-Vx
©
A Figure 0.3.8
y
4 -
3+ y= x23
2 [
1 -
X
1 1 1 1 1 1 1 1
-4 -3 -2 -1 1 2 3 4
A Figure 0.3.9
TECHNOLOGY
MASTERY

Solution. For every data point we have xy = 5, so y is inversely proportional to x and
y = 5/x. The graph of this equation with the data points is shown in Figure 0.3.6. <«

Inverse proportions arise in various laws of physics. For example, Boyle’s law in physics
states that if a fixed amount of an ideal gas is held at a constant temperature, then the product
of the pressure P exerted by the gas and the volume V that it occupies is constant; that is,

PV =k

This implies that the variables P and V are inversely proportional to one another. Fig-
ure 0.3.7 shows a typical graph of volume versus pressure under the conditions of Boyle’s
law. Note how doubling the pressure corresponds to halving the volume, as expected.

P (Pressure)
10
9
8
7
6
5 2Py |-
4 \
3 \
Pof—+

2 [
1t y N V (Volume)

| | | | | | | | |

12345678910 Vo Vo
A Figure 0.3.6 A Figure 0.3.7 Doubling pressure corresponds

to halving volume

POWER FUNCTIONS WITH NONINTEGER EXPONENTS
If p = 1/n, where n is a positive integer, then the power functions f(x) = x” have the

form f@)=x"" = Yx

In particular, if n = 2, then f(x) = 4/x, and if n = 3, then f(x) = J/x. The graphs of
these functions are shown in parts (a) and (b) of Figure 0.3.8.

Since every real number has a real cube root, the domain of the function f(x) = J/x
is (—o0, 4+0), and hence the graph of y = J/x extends over the entire x-axis. In contrast,
the graph of y = /x extends only over the interval [0, +o0) because /x is imaginary for
negative x. As illustrated in Figure 0.3.8¢, the graphs of y = +/x and y = —./x form the
upper and lower halves of the parabola x = y2. In general, the graph of y = /x extends
over the entire x-axis if n is odd, but extends only over the interval [0, 4-) if n is even.

Power functions can have other fractional exponents. Some examples are

fa)y=x fo) =V, fa)=x18 )

The graph of f(x) = x?/3 is shown in Figure 0.3.9. We will discuss expressions involving
irrational exponents later.

Graphing utililties sometimes omit portions of the graph of a function involving fractional exponents
(or radicals). If f(x) = x”/, where p/q is a positive fraction in lowest terms, then you can circumvent
this problem as follows:

e If pis even and g is odd, then graph g(x) = |x|?/? instead of f(x).
« If pis odd and ¢ is odd, then graph g(x) = (|x|/x)|x|?/¢ instead of f(x).

Use a graphing utility to generate graphs of f(x) = v/x3 and f(x) = x~7/8 that show all of their signif-
icant features.



A more detailed review of polynomials
appears in Appendix C.

The constant 0 is a polynomial called
the zero polynomial. In this text we
will take the degree of the zero poly-
nomial to be undefined. Other texts
may use different conventions for the
degree of the zero polynomial.
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H POLYNOMIALS

A polynomial in x is a function that is expressible as a sum of finitely many terms of the form
cx", where c is a constant and » is a nonnegative integer. Some examples of polynomials

are 2x+1, 3x245r—+2, 3, 4(=4x"), S5xT—x*43

The function (x> — 4)3 is also a polynomial because it can be expanded by the binomial
formula (see the inside front cover) and expressed as a sum of terms of the form cx":

2 =4)> =0 =30)2@) +3(:H)@) — @) =x0 —12x* + 482 —64  (3)

A general polynomial can be written in either of the following forms, depending on
whether one wants the powers of x in ascending or descending order:

co+ c1x + x4 o 4 cpx”

X" ey X" N eix + ¢
The constants cy, ci, . .., ¢, are called the coefficients of the polynomial. When a polyno-
mial is expressed in one of these forms, the highest power of x that occurs with a nonzero
coefficient is called the degree of the polynomial. Nonzero constant polynomials are con-

sidered to have degree 0, since we can write ¢ = ex, Polynomials of degree 1, 2, 3, 4,
and 5 are described as linear, quadratic, cubic, quartic, and quintic, respectively. For

example
pie. 34 5x x> —=3x+1 23 =7
Has degree 1 (linear) Has degree 2 (quadratic) Has degree 3 (cubic)
8x* —9x3 +5x -3 V3438 (x2—4)3
Has degree 4 (quartic) Has degree 5 (quintic) Has degree 6 [see (3)]

The natural domain of a polynomial in x is (—oo, +0), since the only operations involved
are multiplication and addition; the range depends on the particular polynomial. We already
know that the graphs of polynomials of degree O and 1 are lines and that the graphs of
polynomials of degree 2 are parabolas. Figure 0.3.10 shows the graphs of some typical
polynomials of higher degree. Later, we will discuss polynomial graphs in detail, but for
now it suffices to observe that graphs of polynomials are very well behaved in the sense that
they have no discontinuities or sharp corners. As illustrated in Figure 0.3.10, the graphs of
polynomials wander up and down for awhile in a roller-coaster fashion, but eventually that
behavior stops and the graphs steadily rise or fall indefinitely as one travels along the curve
in either the positive or negative direction. We will see later that the number of peaks and
valleys is less than the degree of the polynomial.

y y AY

A Figure 0.3.10

VAN : A s ~_|
VARV, \/

H RATIONAL FUNCTIONS

A function that can be expressed as a ratio of two polynomials is called a rational function.
If P(x) and Q(x) are polynomials, then the domain of the rational function

_ P(x)
IE))

fx)
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consists of all values of x such that Q(x) # 0. For example, the domain of the rational
function

x2 4 2x
) ==
consists of all values of x, except x = 1 and x = —1. Its graph is shown in Figure 0.3.11

along with the graphs of two other typical rational functions.
The graphs of rational functions with nonconstant denominators differ from the graphs
of polynomials in some essential ways:

¢ Unlike polynomials whose graphs are continuous (unbroken) curves, the graphs of
rational functions have discontinuities at the points where the denominator is zero.

* Unlike polynomials, rational functions may have numbers at which they are not
defined. Near such points, many rational functions have graphs that closely approxi-
mate a vertical line, called a vertical asymptote. These are represented by the dashed
vertical lines in Figure 0.3.11.

e Unlike the graphs of nonconstant polynomials, which eventually rise or fall indefi-
nitely, the graphs of many rational functions eventually get closer and closer to some
horizontal line, called a horizontal asymptote, as one traverses the curve in either
the positive or negative direction. The horizontal asymptotes are represented by the
dashed horizontal lines in the first two parts of Figure 0.3.11. In the third part of the
figure the x-axis is a horizontal asymptote.

y
lal 1 Yo
[ [ 41+ |
[ | - |
[ [ |
,,,,,,, L = [ S
I T T\ L X oo~ 1 i X
-5 | | 5 -5 B } 7 -4
[ [ B
\ \ B \
\ \ -3 \ B
\ } \ L
| I
2 2
X<+ 2X xc—1 3
y=—F"- y== y==—
xc-1 Xc—2x—-3 xc+1
A Figure 0.3.11

In this text we will assume that the in-
dependent variable of a trigonometric
function is in radians unless otherwise
stated. A review of trigonometric func-
tions can be found in Appendix B.

B ALGEBRAIC FUNCTIONS

Functions that can be constructed from polynomials by applying finitely many algebraic
operations (addition, subtraction, multiplication, division, and root extraction) are called
algebraic functions. Some examples are

f@) =vVx2—4, f(x)=3Jx2+x),

As illustrated in Figure 0.3.12, the graphs of algebraic functions vary widely, so it is difficult
to make general statements about them. Later in this text we will develop general calculus
methods for analyzing such functions.

f(x) = x¥3(x 4 2)?

THE FAMILIES y = A sin Bx AND y = A cos Bx

Many important applications lead to trigonometric functions of the form
f(x)=Asin(Bx —C) and g(x)=Acos(Bx —C) “)

where A, B, and C are nonzero constants. The graphs of such functions can be obtained by
stretching, compressing, translating, and reflecting the graphs of y = sinx and y = cosx
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y
4 -
y y 3l
5F 15 -
4r 10 2h
3 5
2F ‘ ‘ X
X
1+ X 3 -2 1 2 | | ! !
T I I T 5 -4 -3 -2 -1 1
-5-4-3-2-1 12345
y=Vx2-4 y=3%(2+X) y = x23(x + 2)2
A Figure 0.3.12

appropriately. To see why this is so, let us start with the case where C = 0 and consider
how the graphs of the equations

y=AsinBx and y = AcosBx

relate to the graphs of y = sinx and y = cos x. If A and B are positive, then the effect of the
constant A is to stretch or compress the graphs of y = sin x and y = cos x vertically and the
effect of the constant B is to compress or stretch the graphs of sin x and cos x horizontally.
For example, the graph of y = 2 sin 4x can be obtained by stretching the graph of y = sinx
vertically by a factor of 2 and compressing it horizontally by a factor of 4. (Recall from
Section 0.2 that the multiplier of x stretches when it is less than 1 and compresses when it is
greater than 1.) Thus, as shown in Figure 0.3.13, the graph of y = 2 sin4x varies between
—2 and 2, and repeats every 27/4 = /2 units.

Y

2+ .
y = 2sin4x

y =sinx

> Figure 0.3.13

In general, if A and B are positive numbers, then the graphs of

y=AsinBx and y = AcosBx

oscillate between —A and A and repeat every 27/ B units, so we say that these functions
have amplitude A and period 27/ B. In addition, we define the frequency of these func-
tions to be the reciprocal of the period, that is, the frequency is B/27x. If A or B is negative,
then these constants cause reflections of the graphs about the axes as well as compressing
or stretching them; and in this case the amplitude, period, and frequency are given by

B|

27
amplitude = |A|, period = 1Bl frequency = lz—ﬂ

|B

» Example2 Make sketches of the following graphs that show the period and amplitude.

(a) y = 3sin2mx (b) y =—3c0s0.5x (c) y=1+sinx
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Solution (a). The equation is of the form y = A sin Bx with A = 3 and B = 2, so the
graph has the shape of a sine function, but it has an amplitude of A = 3 and a period of
27w/B = 27/27 = 1 (Figure 0.3.14a).

Solution (b). The equation is of the form y = A cos Bx with A = —3 and B = 0.5, so
the graph has the shape of a cosine curve that has been reflected about the x-axis (be-
cause A = —3 is negative), but with amplitude |A| = 3 and period 27/ B = 27/0.5 = 47
(Figure 0.3.14b).

Solution (c¢). The graph has the shape of a sine curve that has been translated up 1 unit
(Figure 0.3.14¢). «

y y AY

A Figure 0.3.14

e NN T e e
VUVV X

Period | Period |
() (b) (c)

THE FAMILIES y = A sin(Bx - C) AND y = A cos(Bx - C)
To investigate the graphs of the more general families

y=Asin(Bx —C) and y= Acos(Bx —C)

it will be helpful to rewrite these equations as

sl §)] it v [n(e- )

In this form we see that the graphs of these equations can be obtained by translating the
graphs of y = Asin Bx and y = A cos Bx to the left or right, depending on the sign of
C/B. For example, if C/B > 0, then the graph of

y = Asin[B(x — C/B)] = Asin(Bx — C)

can be obtained by translating the graph of y = A sin Bx to the right by C/B units (Fig-
ure 0.3.15). If C/B < 0, the graph of y = Asin(Bx — C) is obtained by translating the
graph of y = A sin Bx to the left by |C/B| units.

Amplitude = A
X
\y =Asin(Bx-C)
y = AsinBx

» Example 3 Find the amplitude and period of

y=3005(2x+g)

> Figure 0.3.15



0.3 Families of Functions 35

and determine how the graph of y = 3 cos 2x should be translated to produce the graph of
this equation. Confirm your results by graphing the equation on a calculator or computer.

Solution. The equation can be rewritten as

which is of the form

VQUICK CHECK EXERCISES 0.3

(See page 38 for answers.)

B A y=seos[2e— ()] =3eos[p (v (=)

[ 1 1
T\
_2\/ _\/Z Z )
— e 7%- e —

A Figure 0.3.16

e[ (e )]

with A =3, B =2, and C/B = —n/4. It follows that the amplitude is A = 3, the period
is 27t/ B = 7, and the graph is obtained by translating the graph of y = 3 cos 2x left by
|C/B| = 7/4 units (Figure 0.3.16). <

1.

2.
3.

EXERCISE SET 0.3

Consider the family of functions y = x”, where n is an in-
teger. The graphs of y = x" are symmetric with respect to
the y-axis if n is . These graphs are symmetric
with respect to the origin if n is . The y-axis is a
vertical asymptote for these graphs if n is

What is the natural domain of a polynomial?

Consider the family of functions y = xl/ " where n is a

nonzero integer. Find the natural domain of these functions
if n is

(a) positive and even
(c) negative and even

(b) positive and odd
(d) negative and odd.

™ Graphing Utilit
phing Utility

. The graph of y = Asin Bx has amplitude ___

4. Classify each equation as a polynomial, rational, algebraic,

or not an algebraic function.
(@ y=+vx+2

(c) y = 5x3 4 cosdx

(e) y =3x244x2

(b) y:\/§x4—x+1

X245
d =
dy P

and is
periodic with period

1.

(a) Find an equation for the family of lines whose members
have slope m = 3.

(b) Find an equation for the member of the family that
passes through (—1, 3).

(c) Sketch some members of the family, and label them
with their equations. Include the line in part (b).

Find an equation for the family of lines whose members are
perpendicular to those in Exercise 1.

(a) Find an equation for the family of lines with y-intercept
b=2.

(b) Find an equation for the member of the family whose
angle of inclination is 135°.

(c) Sketch some members of the family, and label them
with their equations. Include the line in part (b).

Find an equation for

(a) the family of lines that pass through the origin

(b) the family of lines with x-intercept a = 1

(c) the family of lines that pass through the point (1, —2)
(d) the family of lines parallel to 2x + 4y = 1.

Find an equation for the family of lines tangent to the circle
with center at the origin and radius 3.

FOCUS ON CONCEPTS

9-10 State a geometric property common to all lines in the
family, and sketch five of the lines.

. Find an equation for the family of lines that pass through the

intersection of 5x — 3y 4+ 11 =0and 2x — 9y +7 = 0.

. The U.S. Internal Revenue Service uses a 10-year linear de-

preciation schedule to determine the value of various busi-
ness items. This means that an item is assumed to have a
value of zero at the end of the tenth year and that at inter-
mediate times the value is a linear function of the elapsed
time. Sketch some typical depreciation lines, and explain
the practical significance of the y-intercepts.

. Find all lines through (6, —1) for which the product of the

x- and y-intercepts is 3.

9. (a) The family y = —x + b
(b) The family y = mx — 1
(c) The family y = m(x +4) +2
(d) The family x —ky =1
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10. (a) The family y = b

11. In each part, match the equation with one of the accom-
panying graphs.
@ y=x (b) y=2x°
() y=—1/x8 d y=vx2-1
(© y=x-2 (f) y=—x
y y y

(b) The family Ax +2y+1=0
(c) The family 2x + By +1=0
(d) The family y — 1 =m(x + 1)

/x X X

A Figure Ex-11

/\

J N

v \%

r

\

12

. The accompanying table gives approximate values of three
functions: one of the form kx2, one of the form kx 3, and
one of the form kx3/2. Identify which is which, and estimate
k in each case.

x | 025 | 037 | 21 4.0 5.8 6.2 7.9 9.3
f(x) | 640 | 197 | 1.08 | 0.156 |0.0513|0.0420|0.0203|0.0124
g(x) |0.0312|0.0684| 2.20 | 8.00 | 16.8 | 19.2 | 31.2 | 43.2
h(x) | 0.250 | 0.450 | 6.09 | 16.0 | 27.9 | 309 | 444 | 56.7

A Table Ex-12

4 13-14 Sketch the graph of the equation for n = 1, 3, and 5 in
one coordinate system and for n = 2, 4, and 6 in another coordi-
nate system. If you have a graphing utility, use it to check your
work.

13. (@ y=—x" ® y=2"  (©y=@-D"
14. (a) y =2x" b) y=—x""
© y=-3+2)"
15. (a) Sketch the graph of y = ax? for a = %1, £2, and %3
in a single coordinate system.
(b) Sketch the graph of y = x> 4+ b for b = 1, £2, and
=+3 in a single coordinate system.
(c) Sketch some typical members of the family of curves
y =ax>+b.
16. (a) Sketch the graph of y = a+/x fora = £1, £2, and +3

in a single coordinate system.

~17-

(b) Sketch the graph of y = \/x + b for b = £1, £2, and
=+3 in a single coordinate system.
(c) Sketch some typical members of the family of curves

y = a+/x +b.
18 Sketch the graph of the equation by making appropriate

transformations to the graph of a basic power function. If you
have a graphing utility, use it to check your work.

17.

18.

19.

20.

21.

22,

@ y=2(x+1)> (b) y=-3(x-2)°

-3 1
(C)yzm (d)yzm
(@ y=1-Vx+2 b y=1-—Ix+2

5 2
(C)y=m (d)y=m

Sketch the graph of y = x2 + 2x by completing the square
and making appropriate transformations to the graph of
y =x%.

(a) Use the graph of y = 4/x to help sketch the graph of
y = JIxl.

(b) Use the graph of y = J/x to help sketch the graph of
y = Jxl.

As discussed in this section, Boyle’s law states that at a con-

stant temperature the pressure P exerted by a gas is related

to the volume V by the equation PV = k.

(a) Find the appropriate units for the constant k if pressure
(which is force per unit area) is in newtons per square
meter (N/m?) and volume is in cubic meters (m?).

(b) Find k if the gas exerts a pressure of 20,000 N/m? when
the volume is 1 liter (0.001 m?).

(c) Make a table that shows the pressures for volumes of
0.25, 0.5, 1.0, 1.5, and 2.0 liters.

(d) Make a graph of P versus V.

A manufacturer of cardboard drink containers wants to con-
struct a closed rectangular container that has a square base
and will hold ; liter (100 cm?). Estimate the dimensions of
the container that will require the least amount of material
for its manufacture.

23-24 A variable y is said to be inversely proportional to the
square of a variable x if y is related to x by an equation of
the form y = k/x?, where k is a nonzero constant, called the
constant of proportionality. This terminology is used in these
exercises.

23.

According to Coulomb’s law, the force F of attraction be-
tween positive and negative point charges is inversely pro-
portional to the square of the distance x between them.

(a) Assuming that the force of attraction between two point
charges is 0.0005 newton when the distance between
them is 0.3 meter, find the constant of proportionality
(with proper units).

(b) Find the force of attraction between the point charges
when they are 3 meters apart.

(c) Make a graph of force versus distance for the two
charges.

(cont.)



(d) What happens to the force as the particles get closer and
closer together? What happens as they get farther and
farther apart?

24. It follows from Newton’s Law of Universal Gravitation that
the weight W of an object (relative to the Earth) is inversely
proportional to the square of the distance x between the
object and the center of the Earth, that is, W = C/ x2.

(a) Assuming that a weather satellite weighs 2000 pounds
on the surface of the Earth and that the Earth is a sphere
of radius 4000 miles, find the constant C.

(b) Find the weight of the satellite when it is 1000 miles
above the surface of the Earth.

(c) Make a graph of the satellite’s weight versus its distance
from the center of the Earth.

(d) Is there any distance from the center of the Earth at
which the weight of the satellite is zero? Explain your
reasoning.

25-28 True-False Determine whether the statement is true or

false. Explain your answer.

25. Each curve in the family y = 2x + b is parallel to the line
y = 2x.

26. Each curve in the family y = x% 4 bx + ¢ is a translation
of the graph of y = x2.

27. If a curve passes through the point (2, 6) and y is inversely
proportional to x, then the constant of proportionality is 3.

28. Curves in the family y = —5sin(Amx) have amplitude 5
and period 2/|A|.

FOCUS ON CONCEPTS

29. In each part, match the equation with one of the accom-
panying graphs, and give the equations for the horizontal
and vertical asymptotes.

I v
A Figure Ex-29

4 30. Find an equation of the form y = k/(x?> + bx + ¢)
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whose graph is a reasonable match to that in the ac-
companying figure. If you have a graphing utility, use
it to check your work.

AY

Y X<

| |
| |
| |
| |
| |
| |
| |
| |
| |
-1, 1
| |
| |
| |
| |
| |
| |
| |

< Figure Ex-30

31-32 Find an equation of the form y = D 4 A sin Bx or
y = D + A cos Bx for each graph.

31.

AT WP A
oS VBV N 3

Not drawn to scale Not drawn to scale Not drawn to scale
(@) (b) (©)
A Figure Ex-31
32.
y y
y
NS 317\ ’t
| i X | | \\//‘ X /\ i X
T
| 2" af 2% \5
-5
Not drawn to scale Not drawn to scale Not drawn to scale
(@) (b) (©

A Figure Ex-32

33. In each part, find an equation for the graph that has the
form y = yg 4+ Asin(Bx — C).

y
6 y
y
1 3
ﬁ X / X X
| | L1 Ll |
L \/ 2 I 9 —1|/ ANES
-1
Not drawn to scale Not drawn to scale Not drawn to scale
(@) (b) (©)

A Figure Ex-33

34. In the United States, a standard electrical outlet supplies

sinusoidal electrical current with a maximum voltage of
V = 1204/2 volts (V) ata frequency of 60 hertz (Hz). Write
an equation that expresses V as a function of the time 7, as-
suming that V. =0 if t = 0. [Note: 1 Hz = 1 cycle per
second.]
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M 35-36 Find the amplitude and period, and sketch at least two arise in the study of vibrations and other periodic motion.
periods of the graph by hand. If you have a graphing utility, use Express the equation

it to check your work.

35. (a) y =3sindx (b) y = —2cosmx

(c) y =2+ cos (%)

36. (a) y=—1—4sin2x b) y= %cos(3x — )

z:
(¢) y = —4sin (§ + 271)
[ 37. Equations of the form

x = 5v/3sin 27t + % cos 2mt
in the form x = A sin(wt + ), and use a graphing utility to
confirm that both equations have the same graph.

[~ 38. Determine the number of solutions of x = 2 sin x, and use
a graphing or calculating utility to estimate them.

x = A;sinwt + A, cos wt

t/ QUICK CHECK ANSWERS 0.3

1. even; odd; negative 2. (—oo, +) 3. (a) [0, +) (b) (—o, +x) (c) (0, 4%) (d) (—w,0) U (0, +x) 4. (a) algebraic
(b) polynomial (c) not algebraic (d) rational (e) rational 5. |A|; 27/|B)|

m INVERSE FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS

y=x3+1

A Figure 0.4.1

In everyday language the term “inversion” conveys the idea of a reversal. For example,
in meteorology a temperature inversion is a reversal in the usual temperature properties
of air layers, and in music a melodic inversion reverses an ascending interval to the
corresponding descending interval. In mathematics the term inverse is used to describe
functions that reverse one another in the sense that each undoes the effect of the other. In
this section we discuss this fundamental mathematical idea. In particular, we introduce
inverse trigonometric functions to address the problem of recovering an angle that could
produce a given trigonometric function value.

INVERSE FUNCTIONS

The idea of solving an equation y = f(x) for x as a function of y, say x = g(y), is one
of the most important ideas in mathematics. Sometimes, solving an equation is a simple
process; for example, using basic algebra the equation

y=x>+1 y =
can be solved for x as a function of y:
x=Jy-1  |r=

The first equation is better for computing y if x is known, and the second is better for
computing x if y is known (Figure 0.4.1).

Our primary interest in this section is to identify relationships that may exist between
the functions f and g when an equation y = f(x) is expressed as x = g(y), or conversely.
For example, consider the functions f(x) = x> 4 1 and g(y) = /y — I discussed above.
When these functions are composed in either order, they cancel out the effect of one another
in the sense that

g(f(x) = \S/f(x)— 1= \3/(x3+1)— 1=x
fE@O) =P +1=Qy—-1P +1=y

Pairs of functions with these two properties are so important that there is special terminology
for them.

ey



WARNING

If f is a function, then the —1 in the
symbol f~! always denotes an inverse
and never an exponent. That is,

f =t (x) never means

L
f@

The results in Example 2 should make
sense to you intuitively, since the oper-
ations of multiplying by 2 and multiply-
ing by % in either order cancel the effect
of one another, as do the operations of
cubing and taking a cube root.
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0.4.1 perFINITION If the functions f and g satisfy the two conditions

g(f(x)) = x for every x in the domain of f
f(g(y)) = y for every y in the domain of g

then we say that f is an inverse of g and g is an inverse of f or that f and g are inverse
functions.

It can be shown (Exercise 62) that if a function f has an inverse, then that inverse is
unique. Thus, if a function f has an inverse, then we are entitled to talk about “the” inverse
of £, in which case we denote it by the symbol f~'.

» Example 1 The computations in (1) show that g(y) = J/y — I is the inverse of
f(x) = x3 + 1. Thus, we can express g in inverse notation as

oy=Jy-1

and we can express the equations in Definition 0.4.1 as

F7'(f(x)) =x forevery x in the domain of f @
f(f~"(y) =y foreveryy in the domain of f~!

We will call these the cancellation equations for f and f~!. «

CHANGING THE INDEPENDENT VARIABLE

The formulas in (2) use x as the independent variable for f and y as the independent variable
for f~!. Although it is often convenient to use different independent variables for f and
f~!, there will be occasions on which it is desirable to use the same independent variable
for both. For example, if we want to graph the functions f and f~' together in the same
xy-coordinate system, then we would want to use x as the independent variable and y as
the dependent variable for both functions. Thus, to graph the functions f(x) = x3 + 1 and
f~'(y) = ¥y =1 of Example 1 in the same xy-coordinate system, we would change the
independent variable y to x, use y as the dependent variable for both functions, and graph

the equations y=x*+1 and y= Vr—1

We will talk more about graphs of inverse functions later in this section, but for reference
we give the following reformulation of the cancellation equations in (2) using x as the
independent variable for both f and f~!:

f7'(f(x)) =x forevery x in the domain of f 3
f(f~'(x)) =x forevery x in the domain of f~!

» Example 2 Confirm each of the following.

(a) The inverse of f(x) = 2x is f’l(x) = %x.
(b) The inverse of f(x) =x>is f~'(x) = x!/3.

Solution (a).

ST = £ @) = &
P @) = £(5x) =2 (4x) = x

2x) =x
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Solution (b). FUF) = 0 = (x3)1/3 .

SO @) = f&P) = (+15) = x <

In general, if a function f has an inverse
and f(a) = b, then the procedure in
Example 3 shows that a = f~!(b);
that is, f~! maps each output of f
back into the corresponding input (Fig-
ure 0.4.2).

-1
a f

A Figure 0.4.2 If f maps a to b, then
=" maps b back to a.

An alternative way to obtain a formula
for f~!(x) with x as the independent
variable is to reverse the roles of x and
y at the outset and solve the equation
x = f(y) for y as a function of x.

> Example 3 Given that the function f has an inverse and that f(3) =5, find f —1(5).

Solution. Apply f~! to both sides of the equation f(3) = 5 to obtain

[N =176
and now apply the first equation in (3) to conclude that f~1(5) = 3. «

DOMAIN AND RANGE OF INVERSE FUNCTIONS
The equations in (3) imply the following relationships between the domains and ranges of

fand 71

domain of f~! = range of f 4

range of f~! = domain of f @)
One way to show that two sets are the same is to show that each is a subset of the other.
Thus we can establish the first equality in (4) by showing that the domain of f~! is a subset
of the range of f and that the range of f is a subset of the domain of f~!. We do this
as follows: The first equation in (3) implies that £~ is defined at f(x) for all values of x
in the domain of f, and this implies that the range of f is a subset of the domain of f~!.
Conversely, if x is in the domain of f~!, then the second equation in (3) implies that x is
in the range of f because it is the image of f~'(x). Thus, the domain of f~! is a subset of
the range of f. We leave the proof of the second equation in (4) as an exercise.

A METHOD FOR FINDING INVERSE FUNCTIONS

At the beginning of this section we observed that solving y = f(x) = x>+ 1 for x as a
function of y produces x = f~'(y) = J/y — 1. The following theorem shows that this is
not accidental.

0.4.2 THEOREM Ifan equation y = f(x) can be solved for x as a function of y, say
x = g(v), then f has an inverse and that inverse is g(y) = f~'(y).

PROOF Substituting y = f(x) intox = g(y) yields x = g(f(x)), which confirms the first
equation in Definition 0.4.1, and substituting x = g(y) into y = f(x) yields y = f(g(»)),
which confirms the second equation in Definition 0.4.1.

Theorem 0.4.2 provides us with the following procedure for finding the inverse of a
function.

A Procedure for Finding the Inverse of a Function f
Step 1. Write down the equation y = f(x).
Step 2. If possible, solve this equation for x as a function of y.

Step 3. The resulting equation will be x = f~'(y), which provides a formula for f~!
with y as the independent variable.

Step 4. If y is acceptable as the independent variable for the inverse function, then you
are done, but if you want to have x as the independent variable, then you need
to interchange x and y in the equation x = f~'(y) to obtain y = f~'(x).
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» Example 4 Find a formula for the inverse of f(x) = +/3x — 2 with x as the indepen-
dent variable, and state the domain of f~'.

Solution. Following the procedure stated above, we first write

y=+3x-2
Then we solve this equation for x as a function of y:
y2=3x -2
x=30"+2)
which tells us that () = %(yz +2) )
Since we want x to be the independent variable, we reverse x and y in (5) to produce the
formula =+ ©)

We know from (4) that the domain of f~! is the range of f. In general, this need not be
the same as the natural domain of the fomula for f ~1 Indeed, in this example the natural
domain of (6) is (—o, +0), whereas the range of f(x) = +/3x — 21is [0, +o). Thus, if we
want to make the domain of f~! clear, we must express it explicitly by rewriting (6) as

) =142, x>0 <

EXISTENCE OF INVERSE FUNCTIONS
The procedure we gave above for finding the inverse of a function f was based on solving
the equation y = f(x) for x as a function of y. This procedure can fail for two reasons—the
function f may not have an inverse, or it may have an inverse but the equation y = f(x)
cannot be solved explicitly for x as a function of y. Thus, it is important to establish
conditions that ensure the existence of an inverse, even if it cannot be found explicitly.

If a function f has an inverse, then it must assign distinct outputs to distinct inputs. For
example, the function f(x) = x? cannot have an inverse because it assigns the same value
tox =2 and x = —2, namely,

Q)= f(=2)=4

Thus, if f(x) = x? were to have an inverse, then the equation f(2) =4 would imply
that f~'(4) =2, and the equation f(—2) =4 would imply that f~'(4) = —2. But this
is impossible because f~'(4) cannot have two different values. Another way to see that
f(x) = x? has no inverse is to attempt to find the inverse by solving the equation y = x>
for x as a function of y. We run into trouble immediately because the resulting equation
x = %,/y does not express x as a single function of y.

A function that assigns distinct outputs to distinct inputs is said to be one-to-one or
invertible, so we know from the preceding discussion that if a function f has an inverse,
then it must be one-to-one. The converse is also true, thereby establishing the following
theorem.

0.4.3 THEOREM A function has an inverse if and only if it is one-to-one.

Stated algebraically, a function f is one-to-one if and only if f(x;) # f(x2) whenever
X1 7# xo; stated geometrically, a function f is one-to-one if and only if the graphof y = f(x)
is cut at most once by any horizontal line (Figure 0.4.3). The latter statement together with
Theorem 0.4.3 provides the following geometric test for determining whether a function
has an inverse.
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f(x2) y =f(x)

1) = 1069 /\

A

f(x))

>

One-to-one, since f(xq) # f(x,) Not one-to-one, since

i f(x9) = f(Xy) and xq #X
» Figure 0.4.3 X7 % (xg) = f(x2) 1#Xo

0.4.4 THEOREM (The Horizontal Line Test) A function has an inverse function if and
only if its graph is cut at most once by any horizontal line.

» Example 5 Use the horizontal line test to show that f(x) = x? has no inverse but that
f(x) = x? does.

Solution. Figure 0.4.4 shows a horizontal line that cuts the graph of y = x> more than
once, so f(x) = x? is not invertible. Figure 0.4.5 shows that the graph of y = x3 is cut at
most once by any horizontal line, so f(x) = x? is invertible. [Recall from Example 2 that
the inverse of f(x) = x%is f~'(x) = x'3.] «

y <

| |
| |
\ \
\ \
| |
| |
-2 2

A Figure 0.4.4 A Figure 0.4.5

4 » Example 6 Explain why the function f that is graphed in Figure 0.4.6 has an inverse,
3 and find f~'(3).
2
1

Solution. The function f has an inverse since its graph passes the horizontal line test.
« Toevaluate f ~1(3), we view f~'(3) as that number x for which f(x) = 3. From the graph
321 01 2 3 4 5 86 weseethatf(Z):3,sof’1(3)=2. |
A Figure 0.4.6

Il INCREASING OR DECREASING FUNCTIONS ARE INVERTIBLE

A function whose graph is always rising as it is traversed from left to right is said to be an
) ) ) - increasing function, and a function whose graph is always falling as it is traversed from
is an example of an increasing function. left to right is said to be a decreasing function. If x; and x; are points in the domain of a
Give an example of a decreasing func- K . A X
fion and compute fts inverse. function f, then f is increasing if

The function f(x) = x3 in Figure 0.4.5

f(x1) < f(x2) whenever x; < x»
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The points (a, b) and (b, a)
are reflections about y = x.

A Figure 0.4.8

The graphs of fand fLare
reflections about y = x.

A Figure 0.4.9

y y = 2X
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and f is decreasing if
f g f(x1) > f(x2) whenever x; < x»

(Figure 0.4.7). It is evident geometrically that increasing and decreasing functions pass the
horizontal line test and hence are invertible.

y y

Increasing Decreasing

f(xy) fx9)

| |
| |
| |
| | |
| | |
| | |
| | |
| | |
X1 X2 X1

f(xy) < f(xp) if x; <Xy f(xy) > f(xp) if x; <Xy

P Figure 0.4.7

GRAPHS OF INVERSE FUNCTIONS

Our next objective is to explore the relationship between the graphs of f and f~!. For this
purpose, it will be desirable to use x as the independent variable for both functions so we
can compare the graphs of y = f(x) and y = f~'(x).

If (a, b) is a point on the graph y = f(x), then b = f(a). This is equivalent to the
statement that @ = f~'(b), which means that (b, a) is a point on the graph of y = f~!(x).
In short, reversing the coordinates of a point on the graph of f produces a point on the graph
of f£~!. Similarly, reversing the coordinates of a point on the graph of f~' produces a point
on the graph of f (verify). However, the geometric effect of reversing the coordinates of
a point is to reflect that point about the line y = x (Figure 0.4.8), and hence the graphs of
y = f(x) and y = f~!(x) are reflections of one another about this line (Figure 0.4.9). In
summary, we have the following result.

0.4.5 THEOREM If f has an inverse, then the graphs of y = f(x) and y = f~'(x)
are reflections of one another about the line y = x; that is, each graph is the mirror
image of the other with respect to that line.

» Example 7 Figure 0.4.10 shows the graphs of the inverse functions discussed in
Examples 2 and 4. «

//Y=X y 3

A Figure 0.4.10
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Il RESTRICTING DOMAINS FOR INVERTIBILITY
If a function g is obtained from a function f by placing restrictions on the domain of f,
then g is called a restriction of f. Thus, for example, the function

g)=x°, x>0

is a restriction of the function f(x) = x>. More precisely, it is called the restriction of x>
to the interval [0, ).

Sometimes it is possible to create an invertible function from a function that is not
invertible by restricting the domain appropriately. For example, we showed earlier that
f(x) = x? is not invertible. However, consider the restricted functions

filx) = x>, x>0 and frlx) = X%, x<0

the union of whose graphs is the complete graph of f(x) = x? (Figure 0.4.11). These
restricted functions are each one-to-one (hence invertible), since their graphs pass the hor-
izontal line test. As illustrated in Figure 0.4.12, their inverses are

Mo=vx and f'x)=—Vx

y=x%x<0 y=x4x20 -3 -2 -1 /N 1 2 3 4 5

X 71

-2+

A Figure 0.4.11 A Figure 0.4.12

B INVERSE TRIGONOMETRIC FUNCTIONS
A common problem in trigonometry is to find an angle x using a known value of sin x,
cos x, or some other trigonometric function. Recall that problems of this type involve the
computation of “arc functions” such as arcsin x, arccos x, and so forth. We will conclude
this section by studying these arc functions from the viewpoint of general inverse functions.
The six basic trigonometric functions do not have inverses because their graphs repeat
periodically and hence do not pass the horizontal line test. To circumvent this problem
we will restrict the domains of the trigonometric functions to produce one-to-one functions
and then define the “inverse trigonometric functions” to be the inverses of these restricted
functions. The top part of Figure 0.4.13 shows geometrically how these restrictions are
made for sin x, cos x, tan x, and sec x, and the bottom part of the figure shows the graphs
of the corresponding inverse functions

sin"'x, cos'x, tan"'x, sec”'x

(also denoted by arcsin x, arccos x, arctan x, and arcsec x). Inverses of cot x and csc x are
of lesser importance and will be considered in the exercises.
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A Figure 0.4.13

If you have trouble visualizing the cor-
respondence between the top and bot-
tom parts of Figure 0.4.13, keep in
mind that a reflection about y = x
converts vertical lines into horizontal
lines, and vice versa; and it converts
x-intercepts into y-intercepts, and vice
versa.

WARNING

The notations sin~! x, cos™! x, ... are

reserved exclusively for the inverse
trigonometric functions and are not
used for reciprocals of the trigonomet-
ric functions. If we want to express the
reciprocal 1/ sinx using an exponent,
we would write (sinx)~! and never

sin~! x.

The following formal definitions summarize the preceding discussion.

0.4.6 DEFINITION The inverse sine function, denoted by sin~!, is defined to be the
inverse of the restricted sine function

sin x,

—n/2<x<m/2

0.4.7 DEFINITION The inverse cosine function, denoted by cos~!, is defined to be
the inverse of the restricted cosine function

cos x,

O0<x=<m

0.4.8 pEFINITION The inverse tangent function, denoted by tan™!, is defined to be
the inverse of the restricted tangent function

0.4.9 DEFINITION*

tan x,

—n/2 <x <m/2

The inverse secant function, denoted by sec™', is defined to be
the inverse of the restricted secant function

sec x,

0<x <mwithx # 7/2

“There is no universal agreement on the definition of sec™! x, and some mathematicians prefer to restrict the
domain of sec x so that 0 < x < 7/2 or 7 < x < 37/2, which was the definition used in some earlier editions
of this text. Each definition has advantages and disadvantages, but we will use the current definition to conform
with the conventions used by the CAS programs Mathematica, Maple, and Sage.
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Table 0.4.1 summarizes the basic properties of the inverse trigonometric functions we
have considered. You should confirm that the domains and ranges listed in this table are
consistent with the graphs shown in Figure 0.4.13.

Table 0.4.1
PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS
FUNCTION DOMAIN RANGE BASIC RELATIONSHIPS
. .
. sin(sinx) = x if —n/2<x<m/2
sint [-1, 1] [-7/2, /2] ( )

sinsintx) =x if —-1<x<1

cosY(cosx) =x if O<xs<m

-1
cos [-1.1] [0, 7] cos(cosx) = x if -1<x<1
; . -~ tani(tanx) = x if —7w/2 <x < 7/2
tan (oo, +eo) (-l2, nl2) tan(tanx) = X if —co < X < +o0
,l _ .
secl (coo,—1] U [1, +o0) [0, 7/2) U (/2, 7] sec(secx) =x if O<x<m x=m/2

sec(sectx) = x if |x|>1

Il EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS
A common problem in trigonometry is to find an angle whose sine is known. For example,

y you might want to find an angle x in radian measure such that
1+ .
/\ sinx = 1 )
— —— 7740._5, —_——— — — ———
Cocvicc i X and, more generally, for a given value of y in the interval —1 < y < 1 you might want to
_lr _Tm n Sm i
e 6 e 6 = solve the equation sinx =y )
-1 Because sin x repeats periodically, this equation has infinitely many solutions for x; how-
: ever, if we solve this equation as .
A Figure 0.4.14 X =sSsm 'y

then we isolate the specific solution that lies in the interval [—m/2, 7/2], since this is the
range of the inverse sine. For example, Figure 0.4.14 shows four solutions of Equation
Refer to the documentation for your  (7), namely, —1177/6, —77/6, /6, and 57/6. Of these, 77/6 is the solution in the interval
S el ! () = s ®
and inverse tangents; and then confirm
Equation (9) numerically by showing

TECHNOLOGY MASTERY

In general, if we view x = sin~! y as an angle in radian measure whose sine is y, then

i the restriction —7/2 < x < /2 imposes the geometric requirement that the angle x in

sin~1(0.5) ~ 0523598775598 . . standard position terminate in either the first or fourth quadrant or on an axis adjacent to
~ /6 those quadrants.

» Example 8 Find exact values of
(@ sin~'(1/v/2)  (b) sin”' (1)

by inspection, and confirm your results numerically using a calculating utility.

Solution (a). Because sin~'(1/4/2) > 0, we can view x = sin~'(1/4/2) as that angle
If x = cos! y is viewed as an angle in the first quadrant such that sin® = 1/+4/2. Thus, sin™!(1/+/2) = /4. You can confirm
in radian measure whose cosineis y,in _ this with your calculating utility by showing that sin~'(1/+/2) & 0.785 ~ 7/4.
what possible quadrants can x lie? An-
swer the same question for Solution (b). Because sin~'(—=1) < 0, we can view x = sin"!(—1) as an angle in the
x=tan'y and x =sec”'y fourth quadrant (or an adjacent axis) such that sinx = —1. Thus, sin~!'(=1) = —n/2. You
can confirm this with your calculating utility by showing that sin~!(—1) ~ —1.57 ~ —7/2.
4




TECHNOLOGY
MASTERY

There is little to be gained by memoriz-
ing these identities. What is important
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Most calculators do not provide a direct method for calculating inverse secants. In such situations the
identity

-1

sec”!x = cos™(1/x) (10)

is useful (Exercise 50). Use this formula to show that
sec™1(2.25) ~ 1.11 and sec™!(—2.25) ~ 2.03

If you have a calculating utility (such as a CAS) that can find sec™! x directly, use it to check these
values.

IDENTITIES FOR INVERSE TRIGONOMETRIC FUNCTIONS

If we interpret sin~! x as an angle in radian measure whose sine is x, and if that angle is
nonnegative, then we can represent sin~!' x geometrically as an angle in a right triangle in
which the hypotenuse has length 1 and the side opposite to the angle sin~! x has length x
(Figure 0.4.15a). Moreover, the unlabeled acute angle in Figure 0.4.15a is cos™' x, since
the cosine of that angle is x, and the unlabeled side in that figure has length +/1 — x2 by
the Theorem of Pythagoras (Figure 0.4.15b). This triangle motivates a number of useful
identities involving inverse trigonometric functions that are valid for —1 < x < 1; for
example,

sin”'x +cos”x = g (11)
cos(sin~'x) = /1 — x2 (12)
sin(cos™' x) = V1 — x2 (13)
tan(sin~! x) = —— (14)

V1—x?

In a similar manner, tan~! x and sec™! x can be represented as angles in the right triangles
shown in Figures 0.4.15¢ and 0.4.15d (verify). Those triangles reveal additional useful
identities; for example,

is the mastery of the method used to sec(tan_l x) =+ 1+ x2 (15)
obtain them.
) . x2—1
sin(sec™ x) = x=1 (16)
X
1 1 cos X 1+x2 X
X X X Vx2-1
sintx sintx tan 1 x sectx
V1-x? 1 1
(@) (b) (© (d)
A Figure 0.4.15
REMARK | The triangle technique does not always produce the most general form of an identity. For example, in

Exercise 61 we will ask you to derive the following extension of Formula (16) that is valid for x < —1
as well as x > 1:

Vxz—1
x|

sin(sec™' x) = (x| =1 an

Referring to Figure 0.4.13, observe that the inverse sine and inverse tangent are odd func-
tions; that is,

sin”'(—x) = —sin"!'(x) and tan"!(—x) = —tan"'(x) (18-19)
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» Example 9 Figure 0.4.16 shows a computer-generated graph of y = sin~!(sin x).
One might think that this graph should be the line y = x, since sin~!(sinx) = x. Why
isn’t it?

Solution. The relationship sin~!(sin x) = x is valid on the interval —7/2 < x < 7/2,
so we can say with certainty that the graphs of y = sin~!(sinx) and y = x coincide on
this interval (which is confirmed by Figure 0.4.16). However, outside of this interval the
relationship sin~!(sinx) = x does not hold. For example, if the quantity x lies in the
interval /2 < x < 3m/2, then the quantity x — 7 lies in the interval —7/2 < x < 7/2, so

sin’l[sin(x —m]l=x—m

Thus, by using the identity sin(x — 7) = — sinx and the fact that sin~" is an odd function,
Wwe can express sin~!(sin x) as

sin~!(sinx) = sin”!'[—sin(x — 7)] = —sin"![sin(x — 7)] = —(x — 7)

This shows that on the interval 7/2 < x < 37/2 the graph of y = sin”~! (sin x) coincides
with the line y = —(x — ), which has slope —1 and an x-intercept at x = 7. This agrees
with Figure 0.4.16. «

y

%ﬂ—3>t\//ﬁn—7ri7r\/.fn3n’

> Figure 0.4.16

VQUlCK CHECK EXERCISES 0.4  (See page 52 for answers.)

1. Ineach part, determine whether the function f is one-to-one. 4. In each part, determine the exact value without using a cal-
(a) f(¢) is the number of people in line at a movie theater culating utility.
at time 7. (@ sin"'(-)=__
(b) f(x) is the measured high temperature (rounded to the (b) tan~!(1) =
nearest °F) in a city on the xth day of the year. (c) sin™' (34/3) =
(c) f(v) is the weight of v cubic inches of lead. (d) cos™! (%) _
2. A student enters a number on a calculator, doubles it, adds 8 (e) sec!(=2) =

to the result, divides the sum by 2, subtracts 3 from the quo-
tient, and then cubes the difference. If the resulting number

5. In each part, determine the exact value without using a cal-
culating utility.

isx,then ___ was the student’s original number. (a) sin~'(sin7/7) =
3. If (3, —2) is a point on the graph of an odd invertible func- (b) sin~!(sin 57/7) =
tion f, then and are points on the graph (c) tan~!(tan 137/6) =
of f~L. (d) cos™'(cos 12n/7) =

EXERCISE SET 0.4 [ Graphing Utility

1. In(a)-(d), determine whether f and g are inverse functions. 3. Ineach part, use the horizontal line test to determine whether
(@) f(x)=4x, gx)= %x the function f is one-to-one.
®) f(x)=3x4+1, gx)=3x—-1 @ f(x)y=3x+2 b) fx)y=+x—-1
© fx)=Jx—2, glx)=x>+2 ©) fx)=Ix| d flx)=x?

@) fx)=x* gx)=Yx

) f(x)=x>—2x+2 () f(x) =sinx

4 2. Check your answers to Exercise 1 with a graphing utility by =~ [~ 4. In each part, generate the graph of the function f with a
determining whether the graphs of f and g are reflections graphing utility, and determine whether f is one-to-one.
of one another about the line y = x. @ fx)=x>=3x+2 ) f(x)=x>—-3x>+3x—1



FOCUS ON CONCEPTS

5. In each part, determine whether the function f defined
by the table is one-to-one.

@1 x| 1/ 2/3|4a|5]6

f)| 2| -1| 0| 1| 2|3

®f x| 1| 23| 4|58
f)| 4| 76 |-3| 1|4

6. A face of a broken clock lies in the xy-plane with the cen-
ter of the clock at the origin and 3:00 in the direction of
the positive x-axis. When the clock broke, the tip of the
hour hand stopped on the graph of y = f(x), where f is
a function that satisfies f(0) = 0.

(a) Are there any times of the day that cannot appear in
such a configuration? Explain.

(b) How does your answer to part (a) change if f must
be an invertible function?

(c) How do your answers to parts (a) and (b) change if
it was the tip of the minute hand that stopped on the
graph of f?

7. (a) The accompanying figure shows the graph of a func-

tion f over its domain —8 < x < 8. Explain why
f has an inverse, and use the graph to find f~!(2),
f7' (=1, and f71(0).

(b) Find the domain and range of f~!.

(c) Sketch the graph of f~'.

2 .
. /
0 [N S I A I A | [N S I I I I A | X

1 L

-8-7-6-5-4-3-2-1 01 2 345678
A Figure Ex-7

8. (a) Explain why the function f graphed in the accompa-
nying figure has no inverse function on its domain
-3 <x<4.
(b) Subdivide the domain into three adjacent intervals on
each of which the function f has an inverse.

y

N

-3 4

< Figure Ex-8
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9-16 Find a formula for f~!(x).
1
9. f(x)=Tx—6 10. f(x) = 2
P
12. f(x) = J4x+2

4. fx)=5/G2+1), x>0

11. f(x) =3x> -5
13. f(x) =3/x% x<0

Is. f(x):{S/Z—x, x <2
1/x, x>2
16. f(x)={2f’ r=0
x°, x>0

17-20 Find a formula for f~'(x), and state the domain of the
function f~!.

17. f) =@ +2)* x>0
18. f(x)=vx+3

20. f(x) =x —5x2, x>1
21. Let f(x) = ax®> 4+ bx +c,a > 0. Find f~! if the domain

of f is restricted to
(@) x > =b/(2a)

FOCUS ON CONCEPTS

22. The formula F = gC + 32, where C > —273.15 ex-
presses the Fahrenheit temperature F as a function of
the Celsius temperature C.
(a) Find a formula for the inverse function.
(b) In words, what does the inverse function tell you?
(c) Find the domain and range of the inverse function.

23. (a) One meter is about 6.214 x 10~* miles. Find a for-
mula y = f(x) that expresses a length y in meters
as a function of the same length x in miles.

(b) Find a formula for the inverse of f.
(c) Describe what the formula x = f~!(y) tells you in
practical terms.

24. Let f(x) = x%, x > 1,and g(x) = /x.
(a) Show that f(g(x)) =x, x > 1, and g(f(x)) = x,
x> 1.
(b) Show that f and g are not inverses by showing that
the graphs of y = f(x) and y = g(x) are not reflec-
tions of one another about y = x.
(c) Do parts (a) and (b) contradict one another? Ex-

19. f(x) = —+/3—2x

(b) x < —b/(2a).

plain.
25. (a) Show that f(x) = (3 — x)/(1 — x) is its own in-
Verse.
(b) What does the result in part (a) tell you about the
graph of f?

26. Sketch the graph of a function that is one-to-one on
(—o0, 40), yet not increasing on (—oo, +o0) and not de-
creasing on (—oo, 4c0).

27. Let f(x) = 2x* +5x + 3. Find x if f~'(x) = 1.
3

28. Let f(x) = xzxﬁ Find x if f~'(x) = 2.
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29. Prove that if a®> + bc # 0, then the graph of
ax+b

cX —a

Jx) =

is symmetric about the line y = x.

30. (a) Prove: If f and g are one-to-one, then so is the compo-
sition fog.
(b) Prove: If f and g are one-to-one, then

(fog) ' =g lof™!

31-34 True-False Determine whether the statement is true or

false. Explain your answer.

31. If f is an invertible function such that f(2) = 2, then
=14

32. If f and g are inverse functions, then f and g have the same
domain.

33. A one-to-one function is invertible.

34. The range of the inverse tangent function is the interval
—m/2 <y <m/2

35. Given that § = tan™! (%), find the exact values of sin#,
cos 8, cotf, secH, and csc .

36. Given that 8 = sec™! 2.6, find the exact values of sin9,
cos @, tan 8, cot @, and csc 6.

37. For which values of x is it true that
(a) cos !(cosx) =x (b) cos(cos™ x) =x
(c) tan~!(tanx) = x (d) tan(tan—'x) = x?

1

38-39 Find the exact value of the given quantity.
38. sec [Sin’1 (—%)] 39. sin [2 cos™! (%)]

40-41 Complete the identities using the triangle method (Fig-

ure 0.4.15).

40. (a) sin(cos™'x) =?
(c) csc(tan™!x) =?

41. (a) cos(tan™'x) =?
(c) sin(sec™!'x) =7

(b) tan(cos™'x) =?
(d) sin(tan~'x) =?
(b) tan(cos™'x) =?
(d) cot(sec™'x) =?

] 42. (a) Use a calculating utility set to radian measure to make

tables of values of y =sin~!x and y = cos™' x for

x=-1,-08, —-0.6,...,0,0.2,...,1. Round your
answers to two decimal places.

(b) Plot the points obtained in part (a), and use the points to
sketch the graphs of y = sin™! x and y = cos~! x. Con-
firm that your sketches agree with those in Figure 0.4.13.

(c) Use your graphing utility to graph y =sin~!x and
y = cos~! x; confirm that the graphs agree with those
in Figure 0.4.13.

] 43. In each part, sketch the graph and check your work with a

graphing utility.

.1 —-11
(@) y=sin"" 2x (b) y =tan lix

44. The law of cosines states that
c? = a* + b* — 2abcos b

where a, b, and c are the lengths of the sides of a triangle and
0 is the angle formed by sides a and b. Find 6, to the nearest
degree, for the triangle witha =2,b =3, and ¢ = 4.

45-46 Use a calculating utility to approximate the solution of
each equation. Where radians are used, express your answer to
four decimal places, and where degrees are used, express it to the
nearest tenth of a degree. [Note: In each part, the solution is not
in the range of the relevant inverse trigonometric function.]

45. (a) sinx =037, n/2 <x <m
(b) sinf = —0.61, 180° <6 < 270°

46. (a) cosx = —0.85, 7 <x < 3n/2
(b) cosf =0.23, —90° <6 <O0°

FOCUS ON CONCEPTS

47. (a) Use a calculating utility to evaluate the expressions
sin~!(sin™! 0.25) and sin~! (sin~" 0.9), and explain
what you think is happening in the second calcula-
tion.

(b) For what values of x in the interval —1 < x < 1 will
your calculating utility produce a real value for the
function sin~!(sin™! x)?

48. A soccer player kicks a ball with an initial speed of 14
m/s at an angle 6 with the horizontal (see the accom-
panying figure). The ball lands 18 m down the field.
If air resistance is neglected, then the ball will have a
parabolic trajectory and the horizontal range R will be
given by V2

R = —sin26
8

where v is the initial speed of the ball and g is the ac-
celeration due to gravity. Using g = 9.8 m/s?, approx-
imate two values of @, to the nearest degree, at which
the ball could have been kicked. Which angle results in
the shorter time of flight? Why?

_ ~
0 o4 7 N
G - h
oy g N
N 0 AN
¢\ N\
1 R !

A Figure Ex-48

49-50 The function cot™! x is defined to be the inverse of
the restricted cotangent function

cotx, O<x<m

and the function csc™! x is defined to be the inverse of the

restricted cosecant function
cscx, —-m/2<x<m/2, x#O

Use these definitions in these and in all subsequent exercises
that involve these functions.




49. (a) Sketch the graphs of cot™! x and csc™! x.
(b) Find the domain and range of cot™! x and csc™! x.
50. Show that
tan~!(1/x), ifx >0
(a) cot™'x = .
m+tan~!(1/x), ifx <0
(b) sec™'x =cos™! —, if|x|>1
X
1
(c) esc'x =sin~' —, if x| > 1.
X

51.

52.

53.

Most scientific calculators have keys for the values of only
sin"!'x, cos™' x, and tan~! x. The formulas in Exercise
50 show how a calculator can be used to obtain values of
cot~! x, sec™! x, and csc™! x for positive values of x. Use
these formulas and a calculator to find numerical values for
each of the following inverse trigonometric functions. Ex-
press your answers in degrees, rounded to the nearest tenth
of a degree.

(a) cot™10.7 (b) sec” 1.2 (c) csc12.3

An Earth-observing satellite has horizon sensors that can
measure the angle 6 shown in the accompanying figure.
Let R be the radius of the Earth (assumed spherical) and &

the distance between the satellite and the Earth’s surface.

R
(a) Show that sinf = ——.
) R+h ) )
(b) Find#, to the nearest degree, for a satellite that is 10,000

km from the Earth’s surface (use R = 6378 km).

Earth < Figure Ex-52

The number of hours of daylight on a given day at a given
point on the Earth’s surface depends on the latitude A of the
point, the angle y through which the Earth has moved in its
orbital plane during the time period from the vernal equinox
(March 21), and the angle of inclination ¢ of the Earth’s
axis of rotation measured from ecliptic north (¢ ~ 23.45°).
The number of hours of daylight /4 can be approximated by
the formula

24, D>1
h={12+ %sin™' D, |D|<1
0, D <-1
where D— sin¢g sin y tan A

V1 —sin® ¢ sin? y

and sin~! D is in degree measure. Given that Fairbanks,

Alaska, is located at a latitude of A = 65° N and also that

y = 90° on June 20 and y = 270° on December 20, ap-

proximate

(a) the maximum number of daylight hours at Fairbanks to
one decimal place

0.4 Inverse Functions; Inverse Trigonometric Functions 51

54.

5S.

56.

57.

58.

(b) the minimum number of daylight hours at Fairbanks to
one decimal place.

Source: This problem was adapted from TEAM, A Path to Applied Mathematics,
The Mathematical Association of America, Washington, D.C., 1985.

A camera is positioned x feet from the base of a missile
launching pad (see the accompanying figure). If a missile
of length a feet is launched vertically, show that when the
base of the missile is b feet above the camera lens, the angle
6 subtended at the lens by the missile is

|
|
Camera

\ |

Launchpad < Figure Ex-54

An airplane is flying at a constant height of 3000 ft above
water at a speed of 400 ft/s. The pilot is to release a sur-
vival package so that it lands in the water at a sighted point
P. If air resistance is neglected, then the package will fol-
low a parabolic trajectory whose equation relative to the
coordinate system in the accompanying figure is

y = 3000 — %xz
where g is the acceleration due to gravity and v is the speed
of the airplane. Using g = 32 ft/s2, find the “line of sight”
angle 6, to the nearest degree, that will result in the package
hitting the target point.

Parabolic
T trajectory
of object
3000 ft
J x
P < Figure Ex-55
Prove:
(a) sin~'(—x) = —sin"' x
(b) tan~!(—x) = —tan~! x.
Prove:

(a) cos™!(—x) =m—cos ' x

(b) sec™'(—x) = —sec™ ! x.
Prove:

(a) sin~!

x =tan~! (x| < D

X
V1—x2
b
(b) cos™lx = i tan~! — (Ix] < D).
1—x2
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59. Prove: 60. Use the result in Exercise 59 to show that
(a) tan~! % +tan~! % = /4
tan~' x +tan~!y = tan~! < ty ) (b) 2tan~! { +tan~' I = /4.
I=xy 61. Use identities (10) and (13) to obtain identity (17).
provided —7/2 < tan~! x + tan~'y < /2. [Hint: Use an 62. Prove: A one-to-one function f cannot have two different
identity for tan(ax + B).] inverses.

‘/QUICK CHECK ANSWERS 0.4

1. (a) not one-to-one (b) not one-to-one (c) one-to-one 2. Jx —1 3. (=2,3); 2, =3) 4. (a) —n/2(b) n/4 (c) n/3
(d) /3 (e) 27/3 5. (a) n/7 (b) 27/7 (¢) n/6 (d) 27/7

m EXPONENTIAL AND LOGARITHMIC FUNCTIONS

When logarithms were introduced in the seventeenth century as a computational tool, they
provided scientists of that period computing power that was previously unimaginable.
Although computers and calculators have replaced logarithm tables for numerical
calculations, the logarithmic functions have wide-ranging applications in mathematics
and science. In this section we will review some properties of exponents and logarithms
and then use our work on inverse functions to develop results about exponential and
logarithmic functions.

Il IRRATIONAL EXPONENTS
Recall from algebra that if b is a nonzero real number, then nonzero integer powers of b

are defined by 1
b"=bxbx---xb and b7"=—

n factors b

and if n = 0, then b° = 1. Also, if p/q is a positive rational number expressed in lowest

terms, then 1

b1 = Ypr = (Yb)? and b1 = oTa

If b is negative, then some fractional powers of b will have imaginary values—the quantity
(—2)'/2 = /=2, for example. To avoid this complication, we will assume throughout this
section that b > 0, even if it is not stated explicitly.

There are various methods for defining irrational powers such as

7, 3V VT
One approach is to define irrational powers of b via successive approximations using rational
Table 0.5.1 powers of b. For example, to define 27 consider the decimal representation of :
X X 3.1415926...

3 8.000000 From this decimal we can form a sequence of rational numbers that gets closer and closer
31 8.574188 to 7, namely. 3.1, 3.4, 3141, 3.1415, 3.14159
314 8.815241
3.141 8.821353 and from these we can form a sequence of rational powers of 2:
3.1415 8.824411 231 34 Q34 931415 9314159
3.14159 8.824962 . o . ]
3141592 8.824974 Since the exponents of the terms in this sequence get successively closer to 7, it seems
31415926  8.824977 plausible that the terms themselves will get successively closer to some number. It is that

number that we define to be 27. This is illustrated in Table 0.5.1, which we generated using




TECHNOLOGY MASTERY

Use a calculating utility to verify the re-

sults in Table 0.5.1, and then verify (1)

by using the utility to compute 27 di-

rectly.
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a calculator. The table suggests that to four decimal places the value of 27 is
2" ~ 8.8250 1)

With this notion for irrational powers, we remark without proof that the following familiar
laws of exponents hold for all real values of p and ¢:
bP

bPpe = bp+q’ b_q = pP 4, (bp)q — pPa

THE FAMILY OF EXPONENTIAL FUNCTIONS
A function of the form f(x) = b*, where b > 0, is called an exponential function with
base b. Some examples are

f) =2 fo=03)". fao=x"

Note that an exponential function has a constant base and variable exponent. Thus, functions
such as f(x) = x? and f(x) = x™ would not be classified as exponential functions, since
they have a variable base and a constant exponent.

Figure 0.5.1 illustrates that the graph of y = 5™ has one of three general forms, depending
on the value of b. The graph of y = b* has the following properties:

 The graph passes through (0, 1) because b° = 1.

e Ifb > 1, the value of b* increases as x increases. As you traverse the graph of y = b*
from left to right, the values of b increase indefinitely. If you traverse the graph from
right to left, the values of b* decrease toward zero but never reach zero. Thus, the
x-axis is a horizontal asymptote of the graph of b*.

e If 0 < b < 1, the value of b* decreases as x increases. As you traverse the graph
of y = b* from left to right, the values of b* decrease toward zero but never reach
zero. Thus, the x-axis is a horizontal asymptote of the graph of b*. If you traverse
the graph from right to left, the values of b* increase indefinitely.

e If b =1, then the value of b* is constant.

Some typical members of the family of exponential functions are graphed in Figure
0.5.2. This figure illustrates that the graph of y = (1/b)" is the reflection of the graph of
y = b* about the y-axis. This is because replacing x by —x in the equation y = b* yields

y=b""=(1/b)*

The figure also conveys that for b > 1, the larger the base b, the more rapidly the function
f(x) = b* increases for x > 0.

y = b* y = b* W (L)X (L)X
(O<b<1) Yy (b>1) (2)* (3) (3)74y 100 3¢ 2
4
3 -
2 -
/ 4 1 1 X
-2 -1 1 2
A Figure 0.5.1 A Figure 0.5.2 The family

y=0b"(>0)
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The domain and range of the exponential function f(x) = b* can also be found by
examining Figure 0.5.1:

e Ifb > 0, then f(x) = b* is defined and has a real value for every real value of x, so
the natural domain of every exponential function is (—oo, +0).

e If b > 0and b # 1, then as noted earlier the graph of y = b* increases indefinitely
as it is traversed in one direction and decreases toward zero but never reaches zero
as it is traversed in the other direction. This implies that the range of f(x) = b is
(0, +).”

» Example 1 Sketch the graph of the function f(x) = 1 — 2* and find its domain and
range.

Solution. Start with a graph of y = 2. Reflect this graph across the x-axis to obtain
the graph of y = —2%, then translate that graph upward by 1 unit to obtain the graph of
y =1 — 2" (Figure 0.5.3). The dashed line in the third part of Figure 0.5.3 is a horizontal
asymptote for the graph. You should be able to see from the graph that the domain of f is
(—o0, 40) and the range is (—o, 1). «

y y= 2% y y

s BN 0 f

A Figure 0.5.3

v <

B THE NATURAL EXPONENTIAL FUNCTION
Among all possible bases for exponential functions there is one particular base that plays
The use of the letter e is in honor of a special role in calculus. That base, denoted by the letter e, is a certain irrational number

the Swiss mathematician Leonhard Eu- () y¢e value to six decimal places is
ler (biography on p. 3) who is credited

with recognizing the mathematical im- e~ 2718282 2)
portance of this constant.

This base is important in calculus because, as we will prove later, b = e is the only base

for which the slope of the tangent line™ to the curve y = b* at any point P on the curve is

equal to the y-coordinate at P. Thus, for example, the tangent line to y = e* at (0, 1) has

slope 1 (Figure 0.5.4).

Slope = 1 The function f(x) = ¢* is called the natural exponential function. To simplify typog-
raphy, the natural exponential function is sometimes written as exp(x), in which case the

—/ 0,1) relationship e* ™2 = ¢%1¢* would be expressed as
X

exp(x; + x2) = exp(x1) exp(xz)

A Figure 0.5.4 The tangent line to the
graph of y = ¢* at (0, 1) has slope 1.

“We are assuming without proof that the graph of y = b" is a curve without breaks, gaps, or holes.
“*The precise definition of a tangent line will be discussed later. For now your intuition will suffice.
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TECHNOLOGY | Yourtechnology utility should have keys or commands for approximating e and for graphing the natural
MASTERY | exponential function. Read your documentation on how to do this and use your utility to confirm (2)
and to generate the graphs in Figures 0.5.2 and 0.5.4.
The constant e also arises in the context of the graph of the equation
1 X
v = (1 ; —) 3)
X
As shown in Figure 0.5.5, y = e is a horizontal asymptote of this graph. As a result, the
value of e can be approximated to any degree of accuracy by evaluating (3) for x sufficiently
large in absolute value (Table 0.5.2).
Table 0.5.2
APPROXIMATIONS OF e BY (1 + 1/x)*
FOR INCREASING VALUES OF X
A Y
1 1\
6l X 1+ X (1 S i)
Loy l) 1 2 ~ 2.000000
al X
yoe 10 11 2.593742
== 100 1.01 2.704814
2 ﬁ_ 1000 1.001 2716924
17 « 10,000 1.0001 2.718146
1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 26 5 4 3 2 1 1 2 3 4 5 6 7 100,000 1.00001 2.718268
1,000,000 1.000001 2.718280
A Figure 0.5.5

Logarithms with base 10 are called
common logarithms and are often
written without explicit reference to the
base. Thus, the symbol log x generally
denotes log x.

H LOGARITHMIC FUNCTIONS
Recall from algebra that a logarithm is an exponent. More precisely, if » > 0 and b # 1,
then for a positive value of x the expression

log, x

(read “the logarithm to the base b of x”’) denotes that exponent to which b must be raised
to produce x. Thus, for example,

log,, 100 =2, log,;(1/1000) = —3, log, 16 =4, log,1 =0, log,b=1

102 = 100 1073 = 1/1000 24 =16 =1 b'=b

We call the function f(x) = log, x the logarithmic function with base b.

Logarithmic functions can also be viewed as inverses of exponential functions. To
see why this is so, observe from Figure 0.5.1 that if » > 0 and b # 1, then the graph of
f(x) = b* passes the horizontal line test, so b* has an inverse. We can find a formula for
this inverse with x as the independent variable by solving the equation

x =b

for y as a function of x. But this equation states that y is the logarithm to the base b of x,

so it can be rewritten as
y =log, x

Thus, we have established the following result.

0.5.1 THEOREM Ifb > 0andb # 1, then b* and log, x are inverse functions.
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A Figure 0.5.6
y =log,X.
y y=logx.
4 y = log,x
3 y = log;px-
2
1

I I I B |
_1W12345678910

A Figure 0.5.7 The family
y=log,x (b>1)

TECHNOLOGY MASTERY

Use your graphing utility to generate
the graphs of y = Inx and y = log x.

It follows from this theorem that the graphs of y = b* and y = log, x are reflections of
one another about the line y = x (see Figure 0.5.6 for the case where b > 1). Figure 0.5.7
shows the graphs of y = log, x for various values of b. Observe that they all pass through
the point (1, 0).

The most important logarithms in applications are those with base e. These are called
natural logarithms because the function log, x is the inverse of the natural exponential
function e*. It is standard to denote the natural logarithm of x by In x (read “ell en of x”),
rather than log, x. For example,

Inl1=0, Ine=1, Inl/le=—1, In(e?) =2
Since ¢ = 1 Sincee! = ¢ Since e ! = 1/e Since €2 = ¢°
In general,
y=Inx ifandonlyif x =¢"

As shown in Table 0.5.3, the inverse relationship between b* and log, x produces a
correspondence between some basic properties of those functions.

Table 0.5.3
CORRESPONDENCE BETWEEN PROPERTIES OF
LOGARITHMIC AND EXPONENTIAL FUNCTIONS

PROPERTY OF b* PROPERTY OF log, X

b0 =1 log,1=0

bl=b log,b=1

Rangeis (0, +oo) Domainis (0, +oo)

Domain is (—eo, +c0) Range is (—eo, +c0)

y-axisisa
vertical asymptote

x-axisisa
horizontal asymptote

It also follows from the cancellation properties of inverse functions [see (3) in Section
0.4] that

log, (b*) = x for all real values of x

4
b°%* = x forx >0 @

In the special case where b = e, these equations become
In(e*) = x for all real values of x 5)

e =x forx >0

In words, the functions b* and log, x cancel out the effect of one another when composed
in either order; for example,

logl0" =x, 10°¢* =x, Ine*=x, " =x, hed=5 ""=x
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Il SOLVING EQUATIONS INVOLVING EXPONENTIALS AND LOGARITHMS
You should be familiar with the following properties of logarithms from your earlier studies.

0.5.2 THEOREM (Algebraic Properties of Logarithms) Ifb > 0,b # 1,a > 0,c¢ > 0, and
r is any real number, then:

(a) log,(ac) =log,a+log,c Product property

(b) logb (a/c) = logb a — IOgb c Quotient property

(C) IOgb (Llr) =r IOgb a Power property
(d) logb(l /C) = — logb c Reciprocal property
WARNING These properties are often used to expand a single logarithm into sums, differences, and

multiples of other logarithms and, conversely, to condense sums, differences, and multiples

Expressions of the form log, (u + v) R . . K
’ & of logarithms into a single logarithm. For example,

and log, (v — v) have no useful sim-

plifications. In particular, 5
X
1og, (1 + v) # log, () + log, (v) log % = logxy’ —log /z = logx +logy* —logz"? =logx + 5logy — } logz

log,(u — v) # log, (u) — log, (v)

3
5log2 +log3 —log8 = log32 + log3 — log 8 = log =log 12

Jx(x+3)°

%lnx—ln(xz— D42Inx+3)=Inx"3—In(x2—=1)+In(x+3)2=1In o
X2 —

An equation of the form log, x = k can be solved for x by rewriting it in the exponential
form x = b*, and an equation of the form b* = k can be solved by rewriting it in the
logarithm form x = log,, k. Alternatively, the equation b* = k can be solved by taking any
logarithm of both sides (but usually log or In) and applying part (¢) of Theorem 0.5.2. These
ideas are illustrated in the following example.

» Example 2 Find x such that
(@logx=+2 ®)Ihx+1)=5 (©5=7

Solution (a). Converting the equation to exponential form yields

x =10v2 ~25.95
Solution (b). Converting the equation to exponential form yields

x+l=e or x=e —1~14741

Solution (c). Converting the equation to logarithmic form yields

x =logs 7~ 1.21

Alternatively, taking the natural logarithm of both sides and using the power property of
logarithms yields n7

xIn5=In7 or x=—~1.21 «
In5
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Erik Simonsen/Getty |mages
Power to satellites can be supplied by
batteries, fuel cells, solar cells, or radio-
isotope devices.

» Example 3 A satellite that requires 7 watts of power to operate at full capacity is
equipped with a radioisotope power supply whose power output P in watts is given by the

equation P = 7Se_t/125

where ¢ is the time in days that the supply is used. How long can the satellite operate at full
capacity?
Solution. The power P will fall to 7 watts when
7 =75¢"1%

The solution for 7 is as follows:

7/75 = e—1/125

In(7/75) = In(e"/12%)

In(7/75) = —t/125

t = —1251In(7/75) ~ 296.4

so the satellite can operate at full capacity for about 296 days. <

Here is a more complicated example.

X —X

» Example 4 Solve % =1 for x.

Solution. Multiplying both sides of the given equation by 2 yields
ef—e =2

or equivalently,

Multiplying through by e* yields
e —1=2¢" or e —2-1=0
This is really a quadratic equation in disguise, as can be seen by rewriting it in the form
(e")2 —2¢"—1=0

and letting u = e* to obtain
ub—2u—1=0

Solving for u by the quadratic formula yields

2444 218

or, since u = e*,

e =1+2
But ¢* cannot be negative, so we discard the negative value 1 — +/2; thus,
eF=1+42

Ine* = In(1 +/2)
x =1In(l ++/2)~0.881 <
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B CHANGE OF BASE FORMULA FOR LOGARITHMS

Table 0.5.4
B (dB) 1,
0 100=1

10 10t =10

20 102 = 100

30 103 = 1000

40 10* = 10,000

50 10° = 100,000

120  10% = 1,000,000,000,000

Scientific calculators generally have no keys for evaluating logarithms with bases other
than 10 or e. However, this is not a serious deficiency because it is possible to express
a logarithm with any base in terms of logarithms with any other base (see Exercise 42).
For example, the following formula expresses a logarithm with base b in terms of natural
logarithms:

In x

1 == 6
0L X =1 (6)

We can derive this result by letting y = log, x, from which it follows that »* = x. Taking
the natural logarithm of both sides of this equation we obtain y In b = In x, from which (6)
follows.

» Example 5 Use acalculating utility to evaluate log, 5 by expressing this logarithm in
terms of natural logarithms.

Solution. From (6) we obtain

In5
log, 5 = -2 ~2.321928 <
In2

LOGARITHMIC SCALES IN SCIENCE AND ENGINEERING

Logarithms are used in science and engineering to deal with quantities whose units vary
over an excessively wide range of values. For example, the “loudness” of a sound can
be measured by its intensity I (in watts per square meter), which is related to the energy
transmitted by the sound wave—the greater the intensity, the greater the transmitted energy,
and the louder the sound is perceived by the human ear. However, intensity units are
unwieldy because they vary over an enormous range. For example, a sound at the threshold
of human hearing has an intensity of about 10~ W/m?, a close whisper has an intensity that
is about 100 times the hearing threshold, and a jet engine at 50 meters has an intensity that
is about 10,000,000,000,000 = 10"3 times the hearing threshold. To see how logarithms
can be used to reduce this wide spread, observe that if

y = logx
then increasing x by a factor of 10 adds 1 unit to y since
log10x =log10 +logx =14y

Physicists and engineers take advantage of this property by measuring loudness in terms of
the sound level B, which is defined by

B = 10log(I1/1y)

where Iy = 10712 W/m? is a reference intensity close to the threshold of human hearing.
The units of 8 are decibels (dB), named in honor of the telephone inventor Alexander
Graham Bell. With this scale of measurement, multiplying the intensity / by a factor of 10
adds 10 dB to the sound level B (verify). This results in a more tractable scale than intensity
for measuring sound loudness (Table 0.5.4). Some other familiar logarithmic scales are
the Richter scale used to measure earthquake intensity and the pH scale used to measure
acidity in chemistry, both of which are discussed in the exercises.
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» Example 6 A space shuttle taking off generates a sound level of 150 dB near the
launchpad. A person exposed to this level of sound would experience severe physical
injury. By comparison, a car horn at one meter has a sound level of 110 dB, near the
threshold of pain for many people. What is the ratio of sound intensity of a space shuttle
takeoff to that of a car horn?

Solution. Let I} and B; (= 150 dB) denote the sound intensity and sound level of the
space shuttle taking off, and let /; and 8, (= 110 dB) denote the sound intensity and sound
level of a car horn. Then
L/L = (IL/1)/(Ix/ )
10g(11/12) = IOg(Il/I()) — 10g(12/1())
10log(1,/ 1) = 10log(1,/1y) — 10log(1>/1y) = B1 — B2
10log(1,/ 1) = 150 — 100 = 40
log(1,/1,) =4

ReginaMitchell-Ryall, Tony Gray/NASA/Getty Images — Thus, 1;/1, = 10*, which tells us that the sound intensity of the space shuttle taking off is

The roar of a space shuttle near the 10,000 times greater than a car horn! <«
launchpad would damage your hearing ’

without ear protection.
Il EXPONENTIAL AND LOGARITHMIC GROWTH

The growth patterns of e* and In x illustrated in Table 0.5.5 are worth noting. Both functions

Table 0.5.5 increase as x increases, but they increase in dramatically different ways—the value of e*
X eX Inx increases extremely rapidly and that of In x increases extremely slowly. For example, the
1 272 0.00 value of e* at x = 101s over 22,000, but at x = 1000 the value of In x has not even reached 7.
> 7'39 0.69 A function f is said to increase without bound as x increases if the values of f(x)
3 20'09 1'10 eventually exceed any specified positive number M (no matter how large) as x increases
4 54.60 139 indefinitely. Table 0.5.5 strongly suggests that f(x) = e* increases without bound, which
5 14841 161 is consistent with the fact that the range of this function is (0, +). Indeed, if we choose
6 403.43 179 any positive number M, then we will have e* = M when x = In M, and since the values of
7 1096.63 1.95 e* increase as x increases, we will have
8 2980.96 2.08 F =M if x>InM
9 8103.08 2.20
10 22026.47 230 (Figure 0.5.8). It is not clear from Table 0.5.5 whether In x increases without bound as x
100 | 2.69x 10 | 4.61 increases because the values grow so slowly, but we know this to be so since the range of this
1000 | 1.97 x 10% | 6.91 function is (—oe, +0). To see this algebraically, let M be any positive number. We will have
Inx = M when x = ¢, and since the values of In x increase as x increases, we will have
Inx>M if x>
(Figure 0.5.9).
y AY
y=e’
y=M y=M y=Inx
\ \
_/ | i /T/ i
InM / oM

A Figure 0.5.8 The value of y = e* A Figure 0.5.9 The value of y = Inx
will exceed an arbitrary positive value will exceed an arbitrary positive value
of M when x > In M. of M when x > eM
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(See page 63 for answers.)
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1. The function y = (3)" has domain and range
2. The function y = In(1 — x) has domain andrange
3. Express as a power of 4:

(@1 () 2 © 1 @ V8 (o5

EXERCISE SET 0.5 [ Graphing utility

4. Solve each equation for x.

(@) " =1 (b) 10°* = 1,000,000
(c) 7e¥ =56

5. Solve each equation for x.
(@) Inx =3 (b) log(x —1) =2

(c) 2logx —log(x + 1) =log4 —log3

1-2 Simplify the expression without using a calculating utility.

(©) 8—2/3
(©) 970

(b) (=8)*3
(b) 43

1. (a) —8%3
2. (a) 274

3-4 Use a calculating utility to approximate the expression.
Round your answer to four decimal places.

3. (a) 21.57 (b) 5—2.1
4. (@) V24 (b) V0.6

5-6 Find the exact value of the expression without using a cal-
culating utility.

5. (a) log, 16 (b) log, (35)

(c) log, 4 (d) logy 3
6. (a) log,,(0.001) (b) log,, (10
(c) In(e?) (d) In(/e)

7-8 Use a calculating utility to approximate the expression.
Round your answer to four decimal places.

7. (a) log23.2 (b) In0.74
8. (a) 1log0.3 (b) Inm

9-10 Use the logarithm properties in Theorem 0.5.2 to rewrite
the expression in terms of r, s, and 7, where r =Ina, s =Inb,
andt =Inc.

b
9. (a) Ina*vbc (b) In —
a-c

3 3
10. @ In ¥° (b) Iny/ 22
ab c

11-12 Expand the logarithm in terms of sums, differences, and
multiples of simpler logarithms.

2 3

11. (a) log(10x+/x —3) (b) In =%
x2 41
«:;/m xz —+ 1

12. 1 b) 1
@) log ———— (b) In e

13-15 Rewrite the expression as a single logarithm.

13. 4log2 —1log3 +log 16
14. 1logx — 3log(sin2x) + 2
15. 2In(x 4+ 1) + £ Inx — In(cos x)

16-23 Solve for x without using a calculating utility.
16. log,((1+x) =3 17. log;o(v/x) = —1
18. In(x?) =4 19. In(1/x) = -2
20. log;(3*) =17 21. logs(5%) =8

22. In4x —31In(x?) =1n2

23. In(1/x) +In(2x*) = 1n3

24-29 Solve for x without using a calculating utility. Use the
natural logarithm anywhere that logarithms are needed.

24. 3% =2 25. 5% =3

26. 3¢ =5 27. 2¢% =7

28. ¢* —2xe* =0 29. xe " +2¢=0

30. Solve e=2* — 3¢~ = —2 for x without using a calculating

utility. [Hint: Rewrite the equation as a quadratic equation
inu =e*.]

FOCUS ON CONCEPTS

31-34 In each part, identify the domain and range of the
function, and then sketch the graph of the function without
using a graphing utility.

x—1
3. () f)=(3)" —1
32. (@ f(x)=1+Inkx-2)
33. (@) f(x) =In(x?
3. (a) fx) =1—e*t!

(b) g(x) =In|x|

(b) gx) =342
(b) g(x) =e™

(b) g(x)=3InJx—1

35-38 True-False Determine whether the statement is true or
false. Explain your answer.

3

35. The function y = x” is an exponential function.

36. The graph of the exponential function with base b passes
through the point (0, 1).

37. The natural logarithm function is the logarithmic function
with base e.
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38. The domain of a logarithmic function is the interval x > 1.

39. Use a calculating utility and the change of base formula (6)
to find the values of log, 7.35 and logs 0.6, rounded to four
decimal places.

™ 40-41 Graph the functions on the same screen of a graphing

utility. [Use the change of base formula (6), where needed.]
40. Inx, e*, logx, 10*

41. log, x, Inx, logs x, logx

42. (a) Derive the general change of base formula

log, x

1 =
08 * log, b

(b) Use the result in part (a) to find the exact value of
(log, 81)(logs 32) without using a calculating utility.

[ 43. Use a graphing utility to estimate the two points of inter-

section of the graphs of y = 1.3* and y = log, 5 x.

[ 44. Use a graphing utility to estimate the two points of inter-

section of the graphs of y = 0.6%”) and y = log, 4(x?).

I~ 45. (a) Is the curve in the accompanying figure the graph of

an exponential function? Explain your reasoning.

(b) Find the equation of an exponential function that
passes through the point (4, 2).

(c) Find the equation of an exponential function that
passes through the point (2, %)

(d) Use a graphing utility to generate the graph of an
exponential function that passes through the point
2,5).

y

| < Figure Ex-45

I~ 46. (a) Make a conjecture about the general shape of the
graph of y = log(logx), and sketch the graph of
this equation and y = log x in the same coordinate
system.

(b) Check your work in part (a) with a graphing utility.

47. Find the fallacy in the following “proof” that % > %.

Multiply both sides of the inequality 3 > 2 by log % to

get 3log 1 > 2log 1

3 2
log (3)” > log ()
log é > log %

>

oo|—
FNT

48. Prove the four algebraic properties of logarithms in Theo-
rem 0.5.2.

49. If equipment in the satellite of Example 3 requires 15 watts
to operate correctly, what is the operational lifetime of the
power supply?

50. The equation Q = 12¢7905 gives the mass Q in grams of
radioactive potassium-42 that will remain from some initial
quantity after ¢ hours of radioactive decay.

(a) How many grams were there initially?

(b) How many grams remain after 4 hours?

(c) How long will it take to reduce the amount of radioac-
tive potassium-42 to half of the initial amount?

51. The acidity of a substance is measured by its pH value,

which is defined by the formula
pH = —log[H™]

where the symbol [ H ™] denotes the concentration of hydro-
gen ions measured in moles per liter. Distilled water has a
pH of 7; a substance is called acidic if it has pH < 7 and
basic if it has pH > 7. Find the pH of each of the following
substances and state whether it is acidic or basic.

SUBSTANCE [H']

(@ Arterial blood 3.9 x 1078 mol/L
(b) Tomatoes 6.3 % 107> mol/L
(© Milk 4.0% 107" mol/L
(d) Coffee 1.2x 10~% mol/L

52. Use the definition of pH in Exercise 51 to find [H™] in a
solution having a pH equal to
(a) 2.44 (b) 8.06.

53. The perceived loudness § of a sound in decibels (dB) is re-
lated to its intensity / in watts per square meter (W/ m?) by
the equation

B =10log(1/1p)
where Iy = 1072 W/m?. Damage to the average ear occurs
at 90 dB or greater. Find the decibel level of each of the
following sounds and state whether it will cause ear damage.

SOUND |

1.0 x 102 W/m?
1.0 W/m?

1.0x 10* W/m?
3.2x 10> W/m?

(@  Jetaircraft (from 50 ft)

(b)  Amplified rock music

(c) Garbage disposa

(d) TV (mid volume from 10 ft)

54-56 Use the definition of the decibel level of a sound (see
Exercise 53).

54. If one sound is three times as intense as another, how much
greater is its decibel level?

55. According to one source, the noise inside a moving automo-
bile is about 70 dB, whereas an electric blender generates
93 dB. Find the ratio of the intensity of the noise of the
blender to that of the automobile.



56.

57.

Suppose that the intensity level of an echo is % the intensity
level of the original sound. If each echo results in another
echo, how many echoes will be heard from a 120 dB sound
given that the average human ear can hear a sound as low
as 10 dB?

On the Richter scale, the magnitude M of an earthquake is
related to the released energy E in joules (J) by the equation

logE =44+ 1.5M

I/ QUICK CHECK ANSWERS 0.5

58.
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(a) Findthe energy E of the 1906 San Francisco earthquake
that registered M = 8.2 on the Richter scale.

(b) If the released energy of one earthquake is 10 times that
of another, how much greater is its magnitude on the
Richter scale?

Suppose that the magnitudes of two earthquakes differ by
1 on the Richter scale. Find the ratio of the released energy
of the larger earthquake to that of the smaller earthquake.
[Note: See Exercise 57 for terminology.]

L. (=0, +o0); (0, +0)

2. (=00, 1); (=00, o)

(©) In2 5. (a) € (b) 101 (c) 2
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M Graphing Utility

3. (a) 4° (b) 4'/2

(c) 472 (d) 4%* (e) 4= 4. (@) Inj=—In2 (b) 2

1.

2.

3.

Sketch the graph of the function

-1, x < -5
f(x) =34/25—x%2, -5<x<35
x =5, x>5

Use the graphs of the functions f and g in the accompanying
figure to solve the following problems.

(a) Find the values of f(—2) and g(3).

(b) For what values of x is f(x) = g(x)?

(c) For what values of x is f(x) < 2?

(d) What are the domain and range of f?

(e) What are the domain and range of g?

(f) Find the zeros of f and g.

=51+

< Figure Ex-2

A glass filled with water that has a temperature of 40°F
is placed in a room in which the temperature is a constant
70°F. Sketch a rough graph that reasonably describes the
temperature of the water in the glass as a function of the
elapsed time.

4. You want to paint the top of a circular table. Find a formula

that expresses the amount of paint required as a function
of the radius, and discuss all of the assumptions you have
made in finding the formula.

. A rectangular storage container with an open top and a

square base has a volume of 8 cubic meters. Material for

the base costs $5 per square meter and material for the sides

$2 per square meter.

(a) Find a formula that expresses the total cost of materials
as a function of the length of a side of the base.

(b) What is the domain of the cost function obtained in
part (a)?

. A ball of radius 3 inches is coated uniformly with plastic.

(a) Express the volume of the plastic as a function of its
thickness.

(b) What is the domain of the volume function obtained in
part (a)?

. A box with a closed top is to be made from a 6 ft by 10

ft piece of cardboard by cutting out four squares of equal

size (see the accompanying figure), folding along the dashed

lines, and tucking the two extra flaps inside.

(a) Find a formula that expresses the volume of the box as a
function of the length of the sides of the cut-out squares.

(b) Find an inequality that specifies the domain of the func-
tion in part (a).

(c) Use the graph of the volume function to estimate the
dimensions of the box of largest volume.

\ |
| 101t -

< Figure Ex-7

. Let C denote the graph of y = 1/x, x > 0.

(a) Express the distance between the point P(1,0) and a
point Q on C as a function of the x-coordinate of Q.

(b) What is the domain of the distance function obtained in
part (a)?

(cont.)
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(c) Use the graph of the distance function obtained in part
(a) to estimate the point Q on C that is closest to the
point P.

. Sketch the graph of the equation x> — 4y% = 0.

I~ 10.

Generate the graph of f(x) = x* — 24x3 — 25x? in two dif-
ferent viewing windows, each of which illustrates a different
property of f. Identify each viewing window and a char-
acteristic of the graph of f that is illustrated well in the
window.

Complete the following table.

x |-4 |-3|-2|-1|0|1|2|3 4
fx) [O|-1|2|1|3|-2|-3]|4]|4
g9) | 3|2 |1 |3 |-1|-4|4|-2]0
(fog)(x)
(9°H)(x)

A Table Ex-11

Let f(x) = —x?and g(x) = 1/+/x. Find formulas for fog

and go f and state the domain of each composition.

Given that f(x) = x2 4+ 1and g(x) = 3x + 2, find all val-

ues of x such that f(g(x)) = g(f(x)).

Let f(x) = 2x —1)/(x +1)and g(x) = 1/(x — 1).

(a) Find f(g(x)).

(b) Is the natural domain of the function h(x) = (3 — x)/x
the same as the domain of f o g? Explain.

Given that

= em=t hw=x2-1
x—1 X

find a formula for f o goh and state the domain of this com-
position.

Given that f(x) = 2x + 1 and h(x) = 2x2 4 4x + 1, find
a function g such that f(g(x)) = h(x).

In each part, classify the function as even, odd, or neither.

(a) x%sinx  (b) sin’x () x+x* (d) sinxtanx

(a) Write an equation for the graph that is obtained by re-
flecting the graph of y = |x — 1| about the y-axis, then
stretching that graph vertically by a factor of 2, then
translating that graph down 3 units, and then reflecting
that graph about the x-axis.

(b) Sketch the original graph and the final graph.

In each part, describe the family of curves.

@ x—a)+@y—da)=1

(b) y=a+ (x —2a)

Find an equation for a parabola that passes through the
points (2, 0), (8, 18), and (-8, 18).

21.

22.

23.

24,

Suppose that the expected low temperature in Anchorage,
Alaska (in °F), is modeled by the equation

T = 50sin 2% (1 — 101) + 25
= 50sin — (¢t —
365

where ¢ is in days and ¢t = O corresponds to January 1.

(a) Sketch the graph of T versus ¢ for 0 < ¢t < 365.

(b) Use the model to predict when the coldest day of the
year will occur.

(c) Based on this model, how many days during the year
would you expect the temperature to be below 0°F?

The accompanying figure shows a model for the tide varia-
tionin an inlet to San Francisco Bay during a 24-hour period.
Find an equation of the form y = yy + y; sin(at + b) for the
model, assuming that ¢ = 0 corresponds to midnight.

35
30
25
20
15
10

5

Height of water y (ft)

4 8 12 4 8 12
Noon  p.Mm.

Time t (h) < Figure Ex-22

The accompanying figure shows the graphs of the equa-
tions y =1 4+ 2sinx and y = 2sin(x/2) + 2 cos(x/2) for
—2m < x < 2m. Without the aid of a calculator, label each
curve by its equation, and find the coordinates of the points
A, B, C, and D. Explain your reasoning.

I~
<

—-2r 2

< Figure Ex-23

The electrical resistance R in ohms (£2) for a pure metal
wire is related to its temperature 7 in °C by the formula
R = Ro(1+kT)

in which Ry and k are positive constants.

(a) Make a hand-drawn sketch of the graph of R versus T,
and explain the geometric significance of Ry and k for
your graph.

(b) In theory, the resistance R of a pure metal wire drops
to zero when the temperature reaches absolute zero
(T = —273°C). What information does this give you
about k?

(c) A tungsten bulb filament has a resistance of 1.1 Q ata
temperature of 20°C. What information does this give
you about R for the filament?

(cont.)



25.

26.

27.

28.

29.

R~ 30.

31.

32.

33.

(d) At what temperature will the tungsten filament have a
resistance of 1.5 Q2?

(a) State conditions under which two functions, f and g,
will be inverses, and give several examples of such
functions.

(b) In words, what is the relationship between the graphs
of y = f(x) and y = g(x) when f and g are inverse
functions?

(c) What is the relationship between the domains and
ranges of inverse functions f and g?

(d) What condition must be satisfied for a function f to
have an inverse? Give some examples of functions that
do not have inverses.

(a) State the restrictions on the domains of sinx, cosux,
tan x, and sec x that are imposed to make those func-
tions one-to-one in the definitions of sin~! x, cos™! x,
tan~! x, and sec™! x.

(b) Sketch the graphs of the restricted trigonometric func-

tions in part (a) and their inverses.

In each part, find f~!(x) if the inverse exists.
(@ f(x)=8x3-1 b)) fx)=x*—2x+1

© f(x)=(e)+1 @ f)=@&+2)/(x -1

o 1 —2x 2 - 2
(e) f(x)_sm< . ), 4+71_x_4—7r

O = T S

Let f(x) = (ax + b)/(cx + d). What conditions on a, b,
¢, and d guarantee that ! exists? Find f~!(x).

In each part, find the exact numerical value of the given
expression.

(a) cos[cos™!(4/5) + sin~1(5/13)]

(b) sin[sin~'(4/5) + cos~1(5/13)]

In each part, sketch the graph, and check your work with a
graphing utility.

(@) f(x) =3sin"'(x/2)

(b) f(x) =cos™'x —m/2

(c) f(x) =2tan"!'(=3x)

(d) f(x) =cos™'x +sin"!x

Suppose that the graph of y = logx is drawn with equal
scales of 1 inch per unit in both the x- and y-directions. If a
bug wants to walk along the graph until it reaches a height
of 5 ft above the x-axis, how many miles to the right of the
origin will it have to travel?

Suppose that the graph of y = 10" is drawn with equal scales
of 1 inch per unit in both the x- and y-directions. If a bug
wants to walk along the graph until it reaches a height of
100 mi above the x-axis, how many feet to the right of the
origin will it have to travel?

Express the following function as a rational function of x:

31n (62’C (e")3) +2exp(Inl)

34.

] 3s.

~ 36.

I~ 37.

38.

i~ 39.

~ 40.
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Suppose that y = CeX’, where C and k are constants, and
let Y =1Iny. Show that the graph of ¥ versus ¢ is a line,
and state its slope and Y -intercept.

(a) Sketch the curves y = +e /2 and y= e~/ sin 2x for
—7/2 < x < 3m/2 in the same coordinate system, and
check your work using a graphing utility.

(b) Find all x-intercepts of the curve y = e~*/2 sin 2x in the
stated interval, and find the x-coordinates of all points
where this curve intersects the curves y = +emv/2,

Suppose that a package of medical supplies is dropped from

a helicopter straight down by parachute into a remote area.

The velocity v (in feet per second) of the package ¢ seconds

after it is released is given by v = 24.61(1 — e~!3").

(a) Graph v versus .

(b) Show that the graph has a horizontal asymptote v = c.

(c) The constant c is called the terminal velocity. Explain
what the terminal velocity means in practical terms.

(d) Can the package actually reach its terminal velocity?
Explain.

(e) How long does it take for the package to reach 98% of
its terminal velocity?

A breeding group of 20 bighorn sheep is released in a pro-
tected area in Colorado. It is expected that with careful
management the number of sheep, N, after ¢ years will be
given by the formula
220
N=—"
1+ 10(0.837)
and that the sheep population will be able to maintain itself
without further supervision once the population reaches a
size of 80.
(a) Graph N versus ¢.
(b) How many years must the state of Colorado maintain a
program to care for the sheep?
(c) How many bighorn sheep can the environment in the
protected area support? [Hint: Examine the graph of
N versus ¢ for large values of ¢.]

An oven is preheated and then remains at a constant temper-

ature. A potato is placed in the oven to bake. Suppose that

the temperature 7' (in °F) of the potato ¢ minutes later is

given by T = 400 — 325(0.97"). The potato will be consid-

ered done when its temperature is anywhere between 260°F

and 280°F.

(a) During what interval of time would the potato be con-
sidered done?

(b) How long does it take for the difference between the
potato and oven temperatures to be cut in half?

(a) Show that the graphs of y = In x and y = x%? intersect.

(b) Approximate the solution(s) of the equation In x = x%?
to three decimal places.

(a) Show that for x > 0 and k # O the equations

Inx 1

and — = —
X k

xk=¢*

have the same solutions. (cont.)
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(b) Use the graph of y = (Inx)/x to determine the values [ 41. Consider f(x) = x?>tanx +Inx,0 < x < /2.

of k for which the equation x*¥ = ¢* has two distinct (a) Explain why f is one-to-one.
positive solutions. (b) Use a graphing utility to generate the graph of f. Then
(c) Estimate the positive solution(s) of x8 = ¢*. sketch the graphs of f and f~! together. What are the

asymptotes for each graph?
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Air resistance prevents the velocity
of a skydiver from increasing
indefinitely. The velocity
approaches a limit, called the

Joe McBride/Stone/Getty |mages

“terminal velocity.”

LIMITS AND
CONTINUITY

The development of calculus in the seventeenth century by Newton and Leibniz provided
scientists with their first real understanding of what is meant by an “instantaneous rate of
change” such as velocity and acceleration. Once the idea was understood conceptually,
efficient computational methods followed, and science took a quantum leap forward. The
fundamental building block on which rates of change rest is the concept of a “limit,” an idea
that is so important that all other calculus concepts are now based on it.

In this chapter we will develop the concept of a limit in stages, proceeding from an
informal, intuitive notion to a precise mathematical definition. We will also develop theorems
and procedures for calculating limits, and we will conclude the chapter by using the limits to
study “continuous” curves.

m LIMITS (AN INTUITIVE APPROACH)

Tangent at P

P(Xo: Yo)

The concept of a “limit” is the fundamental building block on which all calculus concepts
are based. In this section we will study limits informally, with the goal of developing an
intuitive feel for the basic ideas. In the next three sections we will focus on computational
methods and precise definitions.

A Figure 1.1.1

Many of the ideas of calculus originated with the following two geometric problems:

THE TANGENT LINE PROBLEM  Given a function f and a point P (xg, yo) on its graph,
find an equation of the line that is tangent to the graph at P (Figure 1.1.1).

THE AREA PROBLEM Given a function f, find the area between the graph of f and
an interval [a, b] on the x-axis (Figure 1.1.2).

Traditionally, that portion of calculus arising from the tangent line problem is called

differential calculus and that arising from the area problem is called integral calculus.
However, we will see later that the tangent line and area problems are so closely related
that the distinction between differential and integral calculus is somewhat artificial.

67
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Il TANGENT LINES AND LIMITS

AY
y =X
—
X
a b
A Figure 1.1.2
@ (b)

[\
NS\

A Figure 1.1.3

> Figure 1.1.4

Why are we requiring that P and Q be
distinct?

In plane geometry, a line is called tangent to a circle if it meets the circle at precisely one
point (Figure 1.1.3a). Although this definition is adequate for circles, it is not appropriate
for more general curves. For example, in Figure 1.1.3b, the line meets the curve exactly
once but is obviously not what we would regard to be a tangent line; and in Figure 1.1.3c,
the line appears to be tangent to the curve, yet it intersects the curve more than once.

To obtain a definition of a tangent line that applies to curves other than circles, we must
view tangent lines another way. For this purpose, suppose that we are interested in the
tangent line at a point P on a curve in the xy-plane and that Q is any point that lies on the
curve and is different from P. The line through P and Q is called a secant line for the curve
at P. Intuition suggests that if we move the point Q along the curve toward P, then the
secant line will rotate toward a limiting position. The line in this limiting position is what
we will consider to be the tangent line at P (Figure 1.1.4a). As suggested by Figure 1.1.45,
this new concept of a tangent line coincides with the traditional concept when applied to
circles.

Secant
line

@) (b)

» Example 1 Find an equation for the tangent line to the parabola y = x? at the point
P(1,1).

Solution. 1f we can find the slope m,, of the tangent line at P, then we can use the point
P and the point-slope formula for a line (Web Appendix G) to write the equation of the
tangent line as

y—1l=mg(x—1) ey

To find the slope m,, consider the secant line through P and a point Q(x, x?) on the
parabola that is distinct from P. The slope mg of this secant line is
x2—1
x—1

Mgec = 2

Figure 1.1.4a suggests that if we now let Q move along the parabola, getting closer and
closer to P, then the limiting position of the secant line through P and Q will coincide with
that of the tangent line at P. This in turn suggests that the value of m.. will get closer and
closer to the value of my,, as P moves toward Q along the curve. However, to say that
Q(x, x?) gets closer and closer to P(1, 1) is algebraically equivalent to saying that x gets
closer and closer to 1. Thus, the problem of finding m,, reduces to finding the “limiting
value” of m.. in Formula (2) as x gets closer and closer to 1 (but with x # 1 to ensure that
P and Q remain distinct).
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‘We can rewrite (2) as

xr—1 =D& +1)
x—1 (x-1
where the cancellation of the factor (x — 1) is allowed because x # 1. It is now evident

that m. gets closer and closer to 2 as x gets closer and closer to 1. Thus, m, = 2 and (1)
implies that the equation of the tangent line is

x+1

Mgec =

y—1=2(x —1) orequivalently y=2x —1

Figure 1.1.5 shows the graph of y = x? and this tangent line. <

AREAS AND LIMITS

Just as the general notion of a tangent line leads to the concept of /imit, so does the general
notion of area. For plane regions with straight-line boundaries, areas can often be calculated
by subdividing the region into rectangles or triangles and adding the areas of the constituent
‘ parts (Figure 1.1.6). However, for regions with curved boundaries, such as that in Figure

A Figure 1.1.5

Ay 1.1.7a, amore general approach is needed. One such approach is to begin by approximating
the area of the region by inscribing a number of rectangles of equal width under the curve
and adding the areas of these rectangles (Figure 1.1.7b). Intuition suggests that if we repeat
A Figure 1.1.6 that approximation process using more and more rectangles, then the rectangles will tend
to fill in the gaps under the curve, and the approximations will get closer and closer to the
exact area under the curve (Figure 1.1.7¢). This suggests that we can define the area under
the curve to be the limiting value of these approximations. This idea will be considered in

detail later, but the point to note here is that once again the concept of a limit comes into play.

Az

/

(@ (b) (©)

A Figure 1.1.7

DECIMALS AND LIMITS

Limits also arise in the familiar context of decimals. For example, the decimal expansion
of the fraction % is |
3= 0.33333... 3)

in which the dots indicate that the digit 3 repeats indefinitely. Although you may not have
thought about decimals in this way, we can write (3) as

1
3= 0.33333...=0.3+0.03 + 0.003 4 0.0003 + 0.00003 + - - - “)

which is a sum with “infinitely many” terms. As we will discuss in more detail later, we
interpret (4) to mean that the succession of finite sums

© James Oakley/Alamy
This figure shows a region called the

Mandelbrot Set. It illustrates how 0.3, 0.340.03, 0.340.03+0.003, 0.3+ 0.03 + 0.003 + 0.0003, . ..
complicated a region in the plane can be
and why the notion of area requires gets closer and closer to a limiting value of % as more and more terms are included. Thus,

careful definition. .. . .- . .
limits even occur in the familiar context of decimal representations of real numbers.
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B LIMITS
Now that we have seen how limits arise in various ways, let us focus on the limit concept
itself.
The most basic use of limits is to describe how a function behaves as the independent
variable approaches a given value. For example, let us examine the behavior of the function

fx)=x>—x+1

for x-values closer and closer to 2. It is evident from the graph and table in Figure 1.1.8
that the values of f(x) get closer and closer to 3 as values of x are selected closer and closer

to 2 on either the left or the right side of 2. We describe this by saying that the “limit of

x? — x + 1 is 3 as x approaches 2 from either side,” and we write

limz(x2—x+1)=3 5)

f(x) 4

34

f(x) 4

X 10 15 19 1.95 1.99 1.995 1999 |2 | 2001 | 2.005 2.01 2.05 21 25 3.0

f(x) |1.000000|1.750000|2.710000|2.852500| 2.970100| 2.985025| 2.997001 3.003001 [3.015025 | 3.030100|3.152500| 3.310000| 4.750000 | 7.000000

3> <
> <

Left side Right side
A Figure 1.1.8

This leads us to the following general idea.

1.1.1 riMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we

write
lim f(x) =L (6)
X—a
Since x is required to be different from which is read “the limit of f(x) as x approaches a is L” or “ f(x) approaches L as x
a in (6), the value of f at a, or even approaches a.” The expression in (6) can also be written as

whether f is defined at @, has no bear-

ing on the limit L. The limit describes

the behavior of f close to a but not fx)—L as x—a (7)
ata.
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» Example 2 Use numerical evidence to make a conjecture about the value of

Jim ! (8)
x—1,/x —1
Solution. Although the function
x—1
fx) = NS ©)
TECHNOLOGY MASTERY is undefined at x = 1, this has no bearing on the limit. Table 1.1.1 shows sample x-values

Use

graph of the equation y = f(x) forthe

approaching 1 from the left side and from the right side. In both cases the corresponding

a graphing utility to generate the | .
SR B 9 values of f(x), calculated to six decimal places, appear to get closer and closer to 2, and

function in (9). Find a window contain- hence we conjecture that ) ¥ —

ing x = 1 in which all values of f(x)

are

=2

1
1 _
within 0.5 of y =2 and one in T x—1

which all values of f(x) are within 0.1 This is consistent with the graph of f shown in Figure 1.1.9. In the next section we will

of y =2. show how to obtain this result algebraically. <«
Table 1.1.1
X 0.99 0.999 0.9999 0.99999 1.00001 1.0001 1.001 1.01
f(x) | 1.994987 | 1.999500 | 1.999950 | 1.999995 2.000005 | 2.000050 | 2.000500| 2.004988
y > <
Left side Right side
y=109= 2"t
3L Vx—1
L I / » Example 3 Use numerical evidence to make a conjecture about the value of
2——x | .
\ . Sinx
Ti R lim (10)
| | | x—>0 X
1 o
\ \
| } l ‘ ‘ X Solution. With the help of a calculating utility set in radian mode, we obtain Table 1.1.2.
X>lex 2 3 The data in the table suggest that
i sin x
A Figure 1.1.9 lim -1 an
x—=0 Xx

Use numerical evidence to determine
whether the limit in (11) changes if x

The result is consistent with the graph of f(x) = (sinx)/x shown in Figure 1.1.10. Later
in this chapter we will give a geometric argument to prove that our conjecture is correct. <

is measured in degrees.

y
Table 1.1.2 I

X _ sinx 0 y="f09= 5%
(RADIANS) y=—~x" G A i )

+1.0 0.84147 x ‘0 R
+0.9 0.87036
+0.8 0.89670 As X approaches 0 from the left
+0.7 0.92031 > Figure 1.1.10 or right, f(X) approaches 1.
+0.6 0.94107
+0.5 0.95885
+04 0.97355 | SAMPI..ING RITFALLS . . . .
+0.3 0.98507 Numerical evidence can sometimes lead to incorrect conclusions about limits because of
+02 0.99335 roundoff error or because the sample values chosen do not reveal the true limiting behavior.
+01 0.99833 For example, one might incorrectly conclude from Table 1.1.3 that
+0.01 0.99998 lim sin (Z) -0
X —> X



72 Chapter 1 / Limits and Continuity

The fact that this is not correct is evidenced by the graph of f in Figure 1.1.11. The graph
reveals that the values of f oscillate between —1 and 1 with increasing rapidity as x — 0
and hence do not approach a limit. The data in the table deceived us because the x-values
selected all happened to be x-intercepts for f(x). This points out the need for having
alternative methods for corroborating limits conjectured from numerical evidence.

Table 1.1.3
X z f) =sin(%) y =sin(g)
x==1 7 sin(zr) =0
x=+0.1 +107 sin(+107) = 0 .
x=+00l  +1007 sin(+1007) = 0 ) |
x=%0.001  +10007x sin(£1000x) = 0
x = +0.0001

+10,0007  sin(+10,0007) = 0

A Figure 1.1.11

A Figure 1.1.12

As with two-sided limits, the one-sided
limits in (14) and (15) can also be writ-

ten as

fx)—=L as x—a"

and
f(x)—L as x—a

respectively.

Il ONE-SIDED LIMITS

The limit in (6) is called a two-sided limit because it requires the values of f(x) to get
closer and closer to L as values of x are taken from either side of x = a. However, some
functions exhibit different behaviors on the two sides of an x-value a, in which case it is
necessary to distinguish whether values of x near a are on the left side or on the right side
of a for purposes of investigating limiting behavior. For example, consider the function

x| 1, x>0

== 120

X

12)

which is graphed in Figure 1.1.12. As x approaches 0 from the right, the values of f(x)
approach a limit of 1 [in fact, the values of f(x) are exactly 1 for all such x], and similarly,
as x approaches O from the left, the values of f(x) approach a limit of —1. We denote these
limits by writing
o xl . x]
lim — =1 and lim — =-1 (13)
x—>0t Xx x—0" X
With this notation, the superscript “+” indicates a limit from the right and the superscript
“—" indicates a limit from the left.

This leads to the general idea of a one-sided limit.

1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made
as close as we like to L by taking values of x sufficiently close to a (but greater than a),
then we write

lim+ f(x)=L (14)
and if the values of f(x) can be made as close as we like to L by taking values of x
sufficiently close to a (but less than a), then we write

lim f(x) =L (15)

Expression (14) is read “the limit of f(x) as x approaches a from the right is L” or
“f(x) approaches L as x approaches a from the right.” Similarly, expression (15) is
read “the limit of f(x) as x approaches a from the left is L” or * f(x) approaches L as
x approaches a from the left.”
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B THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS

In general, there is no guarantee that a function f will have a two-sided limit at a given
point a; that is, the values of f(x) may not get closer and closer to any single real number
L as x — a. In this case we say that

lim f(x) does not exist
X—d

Similarly, the values of f(x) may not get closer and closer to a single real number L as
x—a* oras x—a~. In these cases we say that

lim f(x) does not exist
x—at

or that lim f(x) does not exist

X—>a-

In order for the two-sided limit of a function f(x) to exist at a point a, the values of f(x)
must approach some real number L as x approaches a, and this number must be the same
regardless of whether x approaches a from the left or the right. This suggests the following
result, which we state without formal proof.

1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-
sided limit of a function f(x) exists at a if and only if both of the one-sided limits exist
at a and have the same value; that is,

lim f(x) =L ifandonlyif lim f(x)=L = lim+ fx)

» Example 4 Explain why
x|
x—0 Xx
does not exist.

Solution. As x approaches 0, the values of f(x) = |x|/x approach —1 from the left and
approach 1 from the right [see (13)]. Thus, the one-sided limits at O are not the same. <

» Example 5 For the functions in Figure 1.1.13, find the one-sided and two-sided limits
at x = a if they exist.

Solution. The functions in all three figures have the same one-sided limits as x — a,
since the functions are identical, except at x = a. These limits are
lim f(x)=3 and Ilim f(x)=1
x—at x—>a~
In all three cases the two-sided limit does not exist as x — a because the one-sided limits
are not equal. <
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The symbols 40 and —o here are not
real numbers; they simply describe par-
ticular ways in which the limits fail to
exist. Do not make the mistake of ma-
nipulating these symbols using rules of
algebra. For example, it is incorrect to
write (4-0) — (4o0) = 0.

» Example 6 For the functions in Figure 1.1.14, find the one-sided and two-sided limits
at x = a if they exist.

Solution. As in the preceding example, the value of f at x = a has no bearing on the
limits as x — a, so in all three cases we have

lim f(x) =2 and Ilim f(x) =2
x—>at x—>a~

Since the one-sided limits are equal, the two-sided limit exists and

lim f(x) =2 «
X—>a
y y y

3 3r ° 3

2 2r 2
N\ Y=k N\ Y=k ANRAY

1 | 1f | 1 \
| x | x | £
* N\ N\ * N

A Figure 1.1.14

M INFINITE LIMITS
Sometimes one-sided or two-sided limits fail to exist because the values of the function
increase or decrease without bound. For example, consider the behavior of f(x) = 1/x for
values of x near 0. It is evident from the table and graph in Figure 1.1.15 that as x-values
are taken closer and closer to 0 from the right, the values of f(x) = 1/x are positive and
increase without bound; and as x-values are taken closer and closer to O from the left, the
values of f(x) = 1/x are negative and decrease without bound. We describe these limiting

behaviors by writing |

lim — =40 and lim — = —
x—0t Xx x—0" X
Increases
without
bound
\ 1
X
Decreases
without
bound
X -1 -0.1 -0.01 | -0.001 |-0.0001| 0| 0.0001| 0.001 0.01 0.1 1
% -1 -10 -100 | -1000 |-10,000 10,000 1000 100 10 1
Left side T Right side

A Figure 1.1.15
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1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions
lim f(x) =4 and lim f(x) = +»
x—>a~ x—at

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim f(x) =+«
X—a
Similarly, the expressions

lim f(x) = —% and lim+ fx) = —
denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim f(x) = —

X—da

» Example 7 For the functions in Figure 1.1.16, describe the limits at x = a in appro-
priate limit notation.

Solution (a). In Figure 1.1.16a, the function increases without bound as x approaches
a from the right and decreases without bound as x approaches a from the left. Thus,

lim =+ow and lim
x—at X —a x—a X —da

= —0

Solution (b). InFigure 1.1.16b, the function increases without bound as x approaches a
from both the left and right. Thus,
1

1
im—— = lim — = lim — — 4
x—a (x —a)? x—at (x —a)? x—a (x —a)? *

Solution (c). In Figure 1.1.16¢, the function decreases without bound as x approaches
a from the right and increases without bound as x approaches a from the left. Thus,

lim = —o and lim = 4w

Solution (d). In Figure 1.1.16d, the function decreases without bound as x approaches
a from both the left and right. Thus,
-1 . -1 . -1

Im ——=1lm — = lim — = —» <«
x—a (x — a)2 x—at (X — a)2 x—a- (x — a)2

@) (b) (© (d)

A Figure 1.1.16
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B VERTICAL ASYMPTOTES

/I

Figure 1.1.17 illustrates geometrically what happens when any of the following situations
occur:

lim f(x) = +oo,

X—=>a-
In each case the graph of y = f(x) either rises or falls without bound, squeezing closer
and closer to the vertical line x = a as x approaches a from the side indicated in the limit.
The line x = a is called a vertical asymptote of the curve y = f(x) (from the Greek word
asymptotos, meaning “nonintersecting”).

.

lim f(x) =+4w, Ilim f(x) =—w, lim f(x)=—»
x—at x—>a- x—at

y y

L

\/

o A et
)

| |
\ \
| |
\ \
\ \
}a al

|
| |
\ \
| |
| |
| I

lim f(x) =+
X—a~

A Figure 1.1.17

lim f(X) = 4o
x—at

lim_f(x) = —oo
x—at

In general, the graph of a single function can display a wide variety of limits.

» Example 8 For the function f graphed in Figure 1.1.18, find

(g) the vertical asymptotes of the graph of f.

y y = f(x)
A (a) 1i1112_ fx) (b) 1i1112+ fx) (© lin(}_ S (@ liﬂg+ J(x)
©) xlifﬂlf S (@® xlif§41+ fx)
21 Solution (a) and (b).
lim f()=1=f(-2) and lim f(x)=-2
' 3 ; ) Solution (c) and (d).
lim f(x)=0= f(0) and Ilim f(x)= —o
) x—>0" x— 0+
Solution (e) and (f).

A Figure 1.1.18

VQUICK CHECK EXERCISES 1.1

lim f(x) does not exist due to oscillation and lim f(x) = +o
x—4- x— 4+

Solution (g). The y-axis and the line x = 4 are vertical asymptotes for the graph of f. <«

(See page 79 for answers.)

1. We write lim,_, f(x) = L provided the values of
can be made as close to

®) lm f@)=—

as desired, by © lm fx)=___
x—2t

lim f(x) =L

. Use the accompanying graphof y = f(x) (—o < x < 3)to

determine the limits.
(a) lim0 fx)y =

taking values of sufficiently close to but -
@ lim fx)=_—
not______ . x—3"
2. Wewritelim, _, ,- f(x) = 4ccprovided increases y |
without bound, as approaches from the 2r \
left. 1+ y
3. State what must be true about L C i\ g
) ) -2 11 1 2\3
lim f(x) and lim f(x) 1k o |\
) _x—an x—at }
in order for it to be the case that -2+ ‘ <«Figure Ex-4

. The slope of the secant line through P (2, 4) and Q(x, x?)

on the parabola y = x? is mg = x + 2. It follows that the
slope of the tangent line to this parabola at the point P is
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1-10 In these exercises, make reasonable assumptions about
the graph of the indicated function outside of the region de-
picted.

1. For the function g graphed in the accompanying figure, find
(2) lim g(x) (b) lim g(x)
xX—0" X

— 0+

(© lim g(x) (@ £(0).
AY y=9(x)
\ * |
\ /
\ | «
R S
~ < Figure Ex-1

2. For the function G graphed in the accompanying figure, find
() lim G(x) (b) lim G(x)
x—0" x— 0t
() lim0 G(x) (d) G(0).
x—

Y y=G()

N

/ \ X

—
~

- < Figure Ex-2

3. For the function f graphed in the accompanying figure, find
(@) 1irr31_ f(x) (b) lim_f(x)

— 3+
© lim ) @ 10
oo Y=
3 J\
1 X
0 10
> [
FLE [

< Figure Ex-3

4. For the function f graphed in the accompanying figure, find
(@ lim f() (b) lim f(x)
() lim f(x)
x—2

d f@.

y y =f(x)

N

N

I~ < Figure Ex-4

5. For the function F graphed in the accompanying figure, find
@ lim F(x) (b) lim F(x)
X—>—2"

© lim F(x) @) F(2).

- < Figure Ex-5

6. For the function G graphed in the accompanying figure, find
(a) lin(} G(x) (b) lin(}+ G(x)
x— 0~ x—

(c) lim0 G(x) (d) G(0).
) Ay y =G(X)
TN
| // \\ | X
-3 -1 1l 3
pd N
-2 < Figure Ex-6

7. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim f(x)
© lim f(x) @ fG3).

y y = f(x)
4

_/—\

I(IIII\X

wr-e

\\\\\\i/\\\\

< Figure Ex-7

8. For the function ¢ graphed in the accompanying figure, find
@ lim $@) (b) lim $(x)
(© lim ¢(x) @ (4.

y y =K

———rT | | | |
L 4

X
S I S A I |

o < Figure Ex-8

9. For the function f graphed in the accompanying figure on
the next page, find

(@ lim f(x)
xX— —

(© lim f(x)

(e) lim f(x)

(f) the vertical asymptotes of the graph of f.

(b) lim f(x)
@ lim ()



78 Chapter 1 / Limits and Continuity

y =f(x
4 y="f()
X
| | | |
-4 | -2 2/ a4
2
~4 < Figure Ex-9

10. For the function f graphed in the accompanying figure, find
@ lm f) () lim fo) (@ lim f()
(d) lim f(x) (e) lim f(x)  (f) lim f(x)
x—0t x—2- x—2t
(g) the vertical asymptotes of the graph of f.

=f(X
A y=f
| \
| /\ | 1 X
-3/ 2 | 4
Lol
4T < Figure Ex-10

4 11-12 (i) Complete the table and make a guess about the limit
indicated. (ii) Confirm your conclusions about the limit by
graphing a function over an appropriate interval. [Note: For
the inverse trigonometric function, be sure to put your calculat-
ing and graphing utilities in radian mode.]

X

1. () = &2 lim f(x)
X x—0
x | —001| —0.001 | —0.0001 | 0.0001 | 0.001 | 0.01
f(x)
A Table Ex-11
sin~!'2x
12. f(x) = ; lim f(x)
x—0
x | -01|-001| —0.001| 0.001| 001 | 0.1
f(x)

A Table Ex-12

13-16 (i) Make a guess at the limit (if it exists) by evaluating the
function at the specified x-values. (ii) Confirm your conclusions
about the limit by graphing the function over an appropriate in-
terval. (iii) If you have a CAS, then use it to find the limit. [Note:
For the trigonometric functions, be sure to put your calculating
and graphing utilities in radian mode.]

13.

14.

15.

16.

1
; x=2,15,1.1,1.01, 1.001, 0, 0.5, 0.9,

. X =
@ e
0.99,0.999

1
(b) lim XSL; x=2,15,1.1,1.01,1.001, 1.0001
x—1t x° — 1
1
() lim x3+ . x =0,0.5,0.9,0.99, 0.999, 0.9999
x—>1-x3 =1
Jifi—1
@ lim N . X = 4025, 40.1, 40.001,
x— X
+0.0001
Jrri+1
() lim, N 2 025.0.1,0.001,0.0001
X —> X
Jrrl+1
© lim N 025, —0.1, —0.001,
x—0 x
—0.0001
in3
@ lim S ¢ = 4025, 0.1, +0.001, +0.0001
®) lim <. x=0,-0.5,-0.9, —0.99, —0.999,
x——-1x+1
~15,—1.1, —=1.01, —1.001
. tan(x + 1)
(@) lim T = 0,-05.-0.9, —0.99, —0.999,
x——1 X 4+ 1
~15,—1.1, —1.01, —1.001
sin(5x)
() Tim SN 1025, 0.1, £0.001, +0.0001

x—0 sin(2x) ’

17-20 True-False Determine whether the statement is true or
false. Explain your answer.

17.
18.

19.

20.

If f(a) = L, thenlim,_, f(x) = L.
If lim,_, f(x) exists, then so do lim,_,- f(x) and
linllx—nfr f(x)

If lim,_ ., f(x) and lim,_ ,+ f(x) exist, then so does
lim, o f(0).
If lim, _, ,+ f(x) = +o, then f(a) is undefined.

21-26 Sketch a possible graph for a function f with the speci-
fied properties. (Many different solutions are possible.)

21.

22,

23.

24,

(i) the domain of f is[—1, 1]
(i) f(=D=f0)=f1)=0
(iii) lirzl1+ fx) = limO fx) = linl17 fx) =1
(i) the domain of f is [—2, 1]
() f(=2)=f0)=f(1)=0
(iii) lilzl2+ fx) =2, lim0 f(x) =0, and
hmx—)l‘ f(x) =1
(i) the domain of f is (—, 0]
() f(=2)=f0) =1
(iii) lirril2 f(x) = oo
(i) the domain of f is (0, 4)
@) f(1)=0
(iii) the y-axis is a vertical asymptote for the graph of f
(iv) f(x) <0if0<x <1



25.

26.

@O f(=3)=f0=f2)=0

(ii) 1113127 f(x) = 4o and lilll2+ f(x) = —oo
(iii) lim1 fx) = 4o

® fDH=0,f0=171=0

(ii) lirzlr f(x) =0and lirzll+ fx) =4

(iii) linll, f(x) =1and linll+ f(x) =4

27-30 Modify the argument of Example 1 to find the equation
of the tangent line to the specified graph at the point given.

27.
28.
29.
30.

FOCUS ON CONCEPTS

31

32.

the graph of y = x% at (—1, 1)
the graph of y = x2 at (0, 0)
the graph of y = x* at (1, 1)
the graph of y = x* at (—1, 1)

. In the special theory of relativity the length / of a narrow
rod moving longitudinally is a function / = [(v) of the
rod’s speed v. The accompanying figure, in which c de-
notes the speed of light, displays some of the qualitative
features of this function.

(a) What is the physical interpretation of /y?
(b) Whatis lim,_, .- /(v)? What is the physical signif-
icance of this limit?

A

I I =1()

Length

ol

Speed
A Figure Ex-31

In the special theory of relativity the mass m of a moving
object is a function m = m(v) of the object’s speed v.
The accompanying figure, in which ¢ denotes the speed
of light, displays some of the qualitative features of this
function.

(a) What is the physical interpretation of m?

l/ QUICK CHECK ANSWERS 1.1
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(b) What is lim,_, .- m(v)? What is the physical sig-
nificance of this limit?

m

Mass

Mo

A Figure Ex-32

i~ 33.

34.

35.

Let
1.1/x?

f@) = (1+x%)
(a) Graph f in the window

[—1,1] x [2.5,3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Graph f in the window

[—0.001, 0.001] x [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Graph f in the window

[—0.000001, 0.000001] x [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Later we will be able to show that

M 3.00416602

(b)

(©)

(d)
: 2

lim (1+x?)

What flaw do your graphs reveal about using numerical

evidence (as revealed by the graphs you obtained) to
make conjectures about limits?

Writing Two students are discussing the limit of /x as
x approaches 0. One student maintains that the limit is O,
while the other claims that the limit does not exist. Write
a short paragraph that discusses the pros and cons of each
student’s position.

Writing Given a function f and a real number a, explain
informally why

lim f(x +a) = lim f(x)

(Here “equality” means that either both limits exist and are
equal or that both limits fail to exist.)

1. f(x);L;x;a;a

2. f(x)ix;a

3. Both one-sided limits must exist and equal L.

4. () 0 (b) 1 (c) 4 (d) —» 5.4
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m COMPUTING LIMITS

In this section we will discuss techniques for computing limits of many functions. We
base these results on the informal development of the limit concept discussed in the
preceding section. A more formal derivation of these results is possible after Section 1.4.

Il SOME BASIC LIMITS
Our strategy for finding limits algebraically has two parts:

e First we will obtain the limits of some simple functions.

e Then we will develop a repertoire of theorems that will enable us to use the limits
of those simple functions as building blocks for finding limits of more complicated
functions.

We start with the following basic results, which are illustrated in Figure 1.2.1.

1.2.1 THEOREM Let a and k be real numbers.

1 1
(@) lim k =k () lim x =a () lim - = —oo (d) lim — = 4o

x—a x—>0" X x—0t x

y y:x
f(X):XF 77777777
|
\Y i }
k —> <« Y=k ar - \
1 0 | | 1,
| | | _ o =
A 17
ry
D S S F—p— |
X —» a «— X
.1 1
lim k =k limx=a lim 3 =—oo lim 3 =+eo
X—a X—a Xx—0 x—0*

A Figure 1.2.1

The following examples explain these results further.

» Example 1 If f(x) = k is a constant function, then the values of f(x) remain fixed
at k as x varies, which explains why f(x) — k as x — a for all values of a. For example,

Do not confuse the algebraic size of a . . .

number with its closeness to zero. For XE@ZS 3=3, xh_)mo 3=3, XIE}}, 3=3 4
positive numbers, the smaller the num-

ber the closer it is to zero, but for neg-

ative numbers, the larger the number

the closer it is to zero. For example, » Example2 If f(x) = x,thenasx — aitmustalso be true that f(x) — a. Forexample,
—2 is larger than —4, but it is closer to
zero. lim x =0, lim x = -2, Iimx =7 <«

x—0 x—> =2 xX—>7
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» Example 3 You should know from your experience with fractions that for a fixed
nonzero numerator, the closer the denominator is to zero, the larger the absolute value of
the fraction. This fact and the data in Table 1.2.1 suggest why 1/x — 4o as x — 0" and
why 1/x — —cwasx—0". «

Table 1.2.1
VALUES CONCLUSION
X | -1 -01 -0.01 -0.001 -0.0001 ---| As x — 0 thevaueof 1/x
1/x | -1 -10 -100 -1000 -10,000 --- | decreaseswithout bound.
X 1 0.1 001 0001 00001 ---| As x — 0" thevalue of 1/x
1/x 1 10 100 1000 10,000 - -- | increases without bound.

The following theorem, parts of which are proved in Appendix D, will be our basic tool
for finding limits algebraically.

1.2.2 THEOREM Let a be a real number, and suppose that
lim f(x) =L, and lim g(x) =L,
X—a X—a

That is, the limits exist and have values Ly and L,, respectively. Then:

(@ lim [f(x) +g(0)] = lim f(x) + lim g(x) = L1 + L»
() lim [f(x) = g(0] = lim f(x) = lim g(x) = Ly — L2
© lim [F0)ge0] = (lim f(0) (Jim g00) = L1Ls

lim f(x)
. f(X) x—a Ll .
d) 1 = = —, ded Ly # 0
@M T mgm Ly 7

Theorem 1.2.2(e) remains valid for n (e) lim \’yf(x) = C/lim fx) = \n/L_, provided Ly > 0 if n is even.
even and L; =0, provided f(x) is r—a r—a
nonnegative for x near a with x # a.

Moreover, these statements are also true for the one-sided limitsas x —a~ orasx — a™.

This theorem can be stated informally as follows:

(a) The limit of a sum is the sum of the limits.
(b) The limit of a difference is the difference of the limits.
(c) The limit of a product is the product of the limits.

(d) The limit of a quotient is the quotient of the limits, provided the limit of the denom-
inator is not zero.

(e) The limit of an nth root is the nth root of the limit.

For the special case of part (c) in which f(x) = k is a constant function, we have

lim (kg(x)) = lim k- lim g(x) = k lim g(x) €))]
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and similarly for one-sided limits. This result can be rephrased as follows:

A constant factor can be moved through a limit symbol.

Although parts (a) and (c) of Theorem 1.2.2 are stated for two functions, the results hold
for any finite number of functions. Moreover, the various parts of the theorem can be used
in combination to reformulate expressions involving limits.

» Example 4

lim [£(x) = g(x) +2h(x)] = lim f(x) = lim g(x) +2 lim h(x)

lim [ f(x)g(0h(0] = (lim f()) ( lim g(0) ( lim hx))

3

lim [ f (x)]3 = ( lim f (x)) Take g(x) = h(x) = f(x) in the last equation.
x—a x—a

: n o__ : The extension of Theorem 1.2.2(¢) in which
Xh_I)na[f(-x)] - (xh_)nlu f(x)) there are n factors, each of which is f(x)

n

lim x" = ( lim )C) =a" Apply the previous result with f(x) =x. <
xX—a x—a

l LIMITS OF POLYNOMIALS AND RATIONAL FUNCTIONS AS x — a

» Example 5 Find lims (x? —4x +3).

Solution.
lim ()c2 —4x +3) = lim x% — lim 4x + lim 3 Theorem 1.2.2(a), (b)
x—5 x—5 x—5 x—5
= lim x2 — 4 lim x + lim 3 A constant can be moved
x—5 x—5 x—5 through a limit symbol.
=52 45)+3 The last part of Example 4
=8 «

Observe that in Example 5 the limit of the polynomial p(x) = x> —4x + 3 as x — 5
turned out to be the same as p(5). This is not an accident. The next result shows that, in
general, the limit of a polynomial p(x) as x — a is the same as the value of the polynomial
at a. Knowing this fact allows us to reduce the computation of limits of polynomials to
simply evaluating the polynomial at the appropriate point.

1.2.3 THEOREM For any polynomial
p(x)=co+cix+---+cx"
and any real number a,

xli_)nlp(x) =cotcia+---+ca" = pla)
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PROOF lim p(x) = lim (co +eox 4+ cnx”)
X—a X—a

= lim ¢g + lim ¢;x +--- + lim ¢, x"

X—da X—a X—a

= lim ¢y + ¢y lim x + -+ + ¢, lim x"
X—a X—a

X—a

=ctcaa+---+c¢a" =pa =
» Example 6 Find lim (x" —2x° 4+ .

Solution. The function involved is a polynomial (why?), so the limit can be obtained by
evaluating this polynomial at x = 1. This yields

liml(x7 —2xX°+1DHP =0 «

Recall that a rational function is a ratio of two polynomials. The following example
illustrates how Theorems 1.2.2(d) and 1.2.3 can sometimes be used in combination to
compute limits of rational functions.

5x3 +4
» Example 7 Find lim s .
x—2 x—3

Solution. . s
st Nim G4
lim = —

x—>2 x—3 11m2(x—3)

Theorem 1.2.2(d)

5.2% 44
= — =-44 Theorem 1.2.3 <«
2-3

The method used in the last example will not work for rational functions in which the
limit of the denominator is zero because Theorem 1.2.2(d) is not applicable. There are
two cases of this type to be considered—the case where the limit of the denominator is
zero and the limit of the numerator is not, and the case where the limits of the numerator
and denominator are both zero. If the limit of the denominator is zero but the limit of the
numerator is not, then one can prove that the limit of the rational function does not exist
and that one of the following situations occurs:

* The limit may be —c from one side and +o from the other.
¢ The limit may be +o.
® The limit may be —oo.

Figure 1.2.2 illustrates these three possibilities graphically for rational functions of the form
1/(x —a),1/(x —a)? and —1/(x — a)>.

» Example 8 Find

X . 2—x 2—x

(a) lim 2; (b) lim ——m——— (¢) im ————
x—4t (x =4 (x +2) =4 (x =4 (x +2) =4 (x —H(x+2)

Solution. 1In all three parts the limit of the numerator is —2, and the limit of the denom-
inator is 0, so the limit of the ratio does not exist. To be more specific than this, we need
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+++ - - =--0++ - - -
| | | é
2 2 4
. 2-X
Sign of —2=%
BN Xy (x+2)

A Figure 1.2.3

In Example 9(a), the simplified function
x — 3 is defined at x = 3, but the orig-
inal function is not. However, this has
no effect on the limit as x approaches
3 since the two functions are identical
if x # 3 (Exercise 50).

| | |
| | |

V=g | L/ y=——1—|
} (x-a) } (x-a) }
| | |
} X } X } X
E E E
| | |
| | |
| | |
| | |
| | |
| | |
1

lim == = +oo
X—a
xa* lim —2— = 4o lim-—L =~
lim s2s = —co x—a (X - a) xoa (X—a)
X—a~
A Figure 1.2.2

to analyze the sign of the ratio. The sign of the ratio, which is given in Figure 1.2.3, is
determined by the signs of 2 — x, x — 4, and x + 2. (The method of test points, discussed
in Web Appendix E, provides a way of finding the sign of the ratio here.) It follows from
this figure that as x approaches 4 from the right, the ratio is always negative; and as x
approaches 4 from the left, the ratio is eventually positive. Thus,

2 — 2 —

lim —— % — % and lim —— >~ = o0
x4t (x —4)(x +2) >4 (x —4)(x +2)

Because the one-sided limits have opposite signs, all we can say about the two-sided limit
is that it does not exist. «

In the case where p(x)/q(x) is a rational function for which p(a) = 0 and ¢(a) = 0, the
numerator and denominator must have one or more common factors of x — a. In this case
the limit of p(x)/q(x) as x — a can be found by canceling all common factors of x — a
and using one of the methods already considered to find the limit of the simplified function.
Here is an example.

» Example 9 Find

2 2
x“—6x+9 2x + 8 x“—3x—10
a) lim —— b) lim ——— ¢) lim ——
()x»3 x—3 ()x»74x2+x—12 ()x—>5x2—10x+25
Solution (a). The numerator and the denominator both have a zero at x = 3, so there is
a common factor of x — 3. Then

x> —6x4+9 o (x—=3)?
—— = lim ———

lim =lim(x—-3)=0
x—3  x-=3 =3 x—3 x—3
Solution (b). The numerator and the denominator both have a zero at x = —4, so there
is a common factor of x — (—4) = x + 4. Then
2x + 8 . 2(x +4) . 2 2
m ———=]lm ———=Ilm —=—-=
xo—ax24x—12 x>-a(x+dHx—-3) 1>-4x-3 7

Solution (¢). The numerator and the denominator both have a zero at x = 5, so there is
a common factor of x — 5. Then
oo xr=3x—-10 o x=5x+2) Cox+2
lim —————— = lim ————~ = lim
x=5x2—10x +25 x=>5(x—-5x—-5) x-5x-—5




A Figure 1.2.4

Discuss the logical errors in the follow-
ing statement: An indeterminate form
of type 0/0 must have a limit of zero be-
cause zero divided by anything is zero.
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However,
lims(x—i—2) =7#0 and lims(x -5 =0
SO
o x2—=3x-10 oox+2
lim = lim
x—>5x2—10x+25 x—>5x—35
does not exist. More precisely, the sign analysis in Figure 1.2.4 implies that

x2=3x—-10 i x+2_

1. —_—_— =

O l0x 425 S y_s 17
and

. x2—=3x—-10 Cox+2

lim —m— = =—x <

= lm
r—5" x2—10x + 25 x=>5"x—15

A quotient f(x)/g(x) in which the numerator and denominator both have a limit of zero
as x — a is called an indeterminate form of type 0/0. The problem with such limits is that
it is difficult to tell by inspection whether the limit exists, and, if so, its value. Informally
stated, this is because there are two conflicting influences at work. The value of f(x)/g(x)
would tend to zero as f(x) approached zero if g(x) were to remain at some fixed nonzero
value, whereas the value of this ratio would tend to increase or decrease without bound as
g(x) approached zero if f(x) were to remain at some fixed nonzero value. But with both
f(x) and g(x) approaching zero, the behavior of the ratio depends on precisely how these
conflicting tendencies offset one another for the particular f and g.

Sometimes, limits of indeterminate forms of type 0/0 can be found by algebraic simpli-
fication, as in the last example, but frequently this will not work and other methods must
be used. We will study such methods in later sections.

The following theorem summarizes our observations about limits of rational functions.

1.2.4 THEOREM Let

be a rational function, and let a be any real number.
(@) Ifq(a) #0, then lim f(x) = f(a).
X—a
(b) Ifg(a) =0but p(a) # 0, then lim f(x) does not exist.

LIMITS INVOLVING RADICALS

—1
» Example 10 Find lirn1 a T
x— X —

Solution. 1In Example 2 of Section 1.1 we used numerical evidence to conjecture that
this limit is 2. Here we will confirm this algebraically. Since this limit is an indeterminate
form of type 0/0, we will need to devise some strategy for making the limit (if it exists)
evident. One such strategy is to rationalize the denominator of the function. This yields

x—1 (x=DHx+1D _(x—l)(ﬁJrl):ﬁJrl

Vi—1 o (r=Dx+1) x—1

(x#1D
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Therefore,
Confirm the limit in Example 10 by fac-
toring the numerator.

oox—1 .
_— = = «
i o T i =2

Hl LIMITS OF PIECEWISE-DEFINED FUNCTIONS
For functions that are defined piecewise, a two-sided limit at a point where the formula
changes is best obtained by first finding the one-sided limits at that point.

» Example 11 Let
1/(x+2), x<-=2
flx) = x2 -5, —2<x<3
\/x—13, x >3
Find
@ lim f@) () lim /() (©) lim f(x)

Solution (a). We will determine the stated two-sided limit by first considering the cor-
responding one-sided limits. For each one-sided limit, we must use that part of the formula
that is applicable on the interval over which x varies. For example, as x approaches —2
from the left, the applicable part of the formula is

fx) = T2
and as x approaches —2 from the right, the applicable part of the formula near —2 is
f) =x*=5
Thus,
li = 1 =—
xirle* f(X) xirzl2* x+2 *

lim f(x) = 1im2+(x2 —5)=(=2?-5=-1

from which it follows that lim2 f(x) does not exist.

Solution (b). The applicable part of the formula is f(x) = x> — 5 on both sides of 0, so
there is no need to consider one-sided limits here. We see directly that

lim f(x) = lim (x* = 5) = 0 =5 = =5

y Solution (c). Using the applicable parts of the formula for f(x), we obtain
lim f(x) = lim (x* —5)=3"—5=4

lim f(x) = lim \/x+13=\/lim x+13)=/3+13=4
x— 3t x— 3t x— 3t

Since the one-sided limits are equal, we have

lim3 flx)=4

We note that the limit calculations in parts (a), (b), and (c) are consistent with the graph of
A Figure 1.2.5 f shown in Figure 1.2.5. «
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(See page 88 for answers.)
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87

3-30 Find the limits.

1. In each part, find the limit by inspection. 3. Find the limits.
(a) lim 7 = (b) lim 12y = (@ lim & +x24+x0)"" =
x—8 y—3+ x——1
© lim = = @ lim 2> =____ () lim G-D&xr—2)
x—0" |x]| w—5 |w| x—2- x+1
. . (=D =2)
] —_— —_—m
(e) zl>n11 1-— (C) XEIPH x+1
i i = i = 2_16
. (jnv.en thatlim, _,, f(x) = 1l andlim, _, , g(x) = 2, find the (d) lim X _
limits. x—>4 x —4
(@) lim [3f(0) +2g(0)] = — 4. Let o frrL vs
2f(x) + 1 A
(b) lim —— =
roal = fl0)gx) Find the limits that exist.
v 3 ; _
© tim YW 3 _ @ lm fo)=—
xwa o g(x) () lim f(x)=__
x— 1t
(c) lim1 fx)=—
EXERCISE SET 1.2
1. Given that 3. lim x(x — D@ + 1) 4. lim x? —3x? +9x
x—= x—
lim f(x) =2, limgx)=—-4, limh(x)=0 ¥ —2x 6x —9
X—a X—a X—a 5. lim 6. m ——————
find the limits. x—=3 x+1 x—>0x3—12x+3
. 4 _ 3
@ xh—>ma Lf(x) + 28] 7. lim v ol 8. lim r+8
(b) lim [h(x) —3g(x) + 1] a1t x =1 -2 142
x—a ) 246 5 2_4 4
© lim [f(x)g(x)] @ lim [g(x)]? 9, lim 1O F> 10. 1im T4
x—a e, x—>-1x2—3x —4 x>2 x24+x—6
(e) lim J6+ f(x) (f) lim — 2x2 +x — 1 3x2—x -2
x—a x—a g(x) 11. _ 12. lim ———
. . x—>—1 x+1 x>12x24+x=3
. Use the graphs of f and g in the accompanying figure to 3432 1044 342543
find the limits that exist. If the limit does not exist, explain 13. lim LA L 14. lim rrr-or+s
why. 12 13— 4t t>1 13—3t+42
(a) lim [f(x) + g(x)] (b) lim [f(x) + g(x)] 15. lim 16. lim
x—2 x—0 =3t x —3 x—3" X —
li d 1
(©) im, [f(x)+ g(x)] (d) im [f(x) +g(x)] 1. lim3 . 18. lirr21+ o
1 xX—=>3 X — x— X< —
(e) lim & (f) lim +7g(x) . . X
x—=2 14 g(x) =2 f(x) 19. lim 20. lim
. . x—>2-x2—4 x—>2x2—4
(© lim /f() () lim /7(x) y+6 V+6
x =07 x=0 21. 22, 1
y— 6t y2—36 y—>6~ y2—36
Yoy =f(x Y'y=g 6 3 -
AL L y=9 23. lim 2 24, lim >
y—>6 y2—36 x—4+ x2—2x — 8
i 3— 3—
L Al 25 lim - 26. lim —————
/x X x—4- x?—2x — 8 x—>4x%—2x —8
| | | | | | | 1 1
1 1 27. li 28.
/ [+ N Jm G
L -9 4 —
29. lim — 30. lim >
L L x—9 -3 y—>42 — ﬁ
- 31. Let
A Figure Ex-2 ) — x—1, x<3
f *) = 3x 7, X > 3 (cont.)
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Find
(a) lim f(x) (b) lim f(x) (¢) lim f(x).
x—3" x—3t x—3
32. Let t— 2, t < O
g(r) =117, 0<t<2
2t, t>2
Find

(a) lim g(¢) (b) lim g(¢) (c) lim g(¢).
t—0 t—1 t—2
33-36 True-False Determine whether the statement is true or

false. Explain your answer.

33. If lim,_, f(x) and lim,_, g(x) exist, then so does
lim, — o[ f(x) + g(x)].

34. If limy_,,g(x)=0 and lim,_, f(x) exists,
lim, , ,[ f(x)/g(x)] does not exist.

then

35. If lim, _, , f(x) and lim, _, , g(x) both exist and are equal,
then lim, _, ,[ f(x)/g(x)] = 1.

36. If f(x) is a rational function and x = a is in the domain of
f,thenlim, ., f(x) = f(a).

37-38 First rationalize the numerator and then find the limit.

4-2 244-2
37, fim Y FET2 38, fim Y 172
x—0 X x—0 X
39. Let PR
@) ===
(a) Find lim, | f(x).
(b) Sketch the graph of y = f(x).
40. Let ¥2_9 L 3
7 x££
fx)=1x+3
k, x=-3

(a) Find k so that f(—3) = lim,_, _3 f(x).
(b) With k assigned the value lim,_, _3 f(x), show that
f(x) can be expressed as a polynomial.

FOCUS ON CONCEPTS

41. (a) Explain why the following calculation is incorrect.

1
(b) Show that lim (7 — —2> = —o0,
x—>0t \ x X

t/ QUICK CHECK ANSWERS 1.2

42. (a) Explain why the following argument is incorrect.

43. Find all values of a such that

44. (a) Explain informally why

45. Let p(x) and g (x) be polynomials, with g (xo) = 0. Dis-

. 1 2 1 2
lim | — — =1lm—|{1-
x>0\x  x24+2x x>0 X x4+2

0

= 0

0=
b) Show that li —
(b) Show tha x%(x x2+2x>

. 1 a
lim -
a>1\x—1 x2-1
exists and is finite.
. 1 1
lim <f + 2) +o0
x—>0" \ X X
(b) Verify the limit in part (a) algebraically.

cuss the behavior of the graph of y = p(x)/q(x) in the
vicinity of x = xy. Give examples to support your con-
clusions.

46.

47.

48.

49.

50.

Suppose that f and g are two functions such that
lim, ., f(x) exists but lim, _, ,[ f(x) + g(x)] does not ex-
ist. Use Theorem 1.2.2. to prove that lim, _, , g(x) does not
exist.

Suppose that f and g are two functions such that both
lim, ., f(x) and lim, , ,[ f(x) 4+ g(x)] exist. Use Theo-
rem 1.2.2 to prove that lim, _, , g(x) exists.

Suppose that f and g are two functions such that
lim g(x) =0 and lim @
xX—a xX—a g(x)

exists. Use Theorem 1.2.2 to prove that lim, _,, f(x) = 0.

Writing According to Newton’s Law of Universal Grav-
itation, the gravitational force of attraction between two
masses is inversely proportional to the square of the dis-
tance between them. What results of this section are useful
in describing the gravitational force of attraction between
the masses as they get closer and closer together?

Writing Suppose that f and g are two functions that are
equal except at a finite number of points and that @ denotes
a real number. Explain informally why both

lim f(x) and lim g(x)

X—a X—a
exist and are equal, or why both limits fail to exist. Write a
short paragraph that explains the relationship of this result
to the use of “algebraic simplification” in the evaluation of
a limit.

1. (@) 7 (b) 36 (¢) —1 (d) 1 (e) +o»
4. (a) 2 (b) 0 (c) does not exist

2. () 7 (b) =3 (o) 1

3.

(@) =1 (b) 0 (c) + (d) 8
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m LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

X[

.1
lim X = 0
X—>+o0

A Figure 1.3.1

y

\ Horizontal asymptote y=1L

Up to now we have been concerned with limits that describe the behavior of a function
f(x) as x approaches some real number a. In this section we will be concerned with the
behavior of f(x) as x increases or decreases without bound.

l LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
If the values of a variable x increase without bound, then we write x — 400, and if the
values of x decrease without bound, then we write x — —o. The behavior of a function
f(x) as x increases without bound or decreases without bound is sometimes called the end
behavior of the function. For example,

1 1
Iim — =0 and Iim — =0 (1-2)

X—> —0o X X—+o x

are illustrated numerically in Table 1.3.1 and geometrically in Figure 1.3.1.

Table 1.3.1
VALUES CONCLUSION
X -1 -10 -100 -1000 -10,000 --- | As x — —oco thevalue of 1/x
1/x | -1 -01 -0.01 -0.001 -0.0001 --- | increasestoward zero.
X 1 10 100 1000 10,000 --- | As X — +oo thevalue of 1/x
1/x 1 0.1 001 0.001 0.0001 --- | decreasestoward zero.

In general, we will use the following notation.

1.3.1 LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x) eventually
get as close as we like to a number L as x increases without bound, then we write

lirgl_ f(x)y=L or f(x)—>Lasx—+» 3)
Similarly, if the values of f(x) eventually get as close as we like to a number L as x
decreases without bound, then we write

xgnlw fx)=L or f(x)—>Lasx——x “)

5\,

Figure 1.3.2 illustrates the end behavior of a function f when
lirE fx)=L or lim f(x)=L

In the first case the graph of f eventually comes as close as we like to the line y = L as x
increases without bound, and in the second case it eventually comes as close as we like to
the line y = L as x decreases without bound. If either limit holds, we call the line y = L
a horizontal asymptote for the graph of f.

lim f(x)=L

X—>—c0

A Figure 1.3.2

» Example 1 Tt follows from (1) and (2) that y = 0 is a horizontal asymptote for the
graph of f(x) = 1/x in both the positive and negative directions. This is consistent with
the graph of y = 1/x shown in Figure 1.3.1. «
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y = (1 +
A Figure 1.3.4

» Example 2 Figure 1.3.3 is the graph of f(x) = tan~! x. As suggested by this graph,

lim tan™'x = z and lim tan~'x = I (5-6)
X — 4o 2 X —> —0 2

so the line y = 7/2 is a horizontal asymptote for f in the positive direction and the line
y = —m/2 is a horizontal asymptote in the negative direction. <

» Example 3 Figure 1.3.4 is the graph of f(x) = (1 + 1/x)*. As suggested by this

graph,
1\"* 1\"*
lim (1 + —) =e¢ and lim (1 + —) =e (7-8)
X —> o0 X X —> —00 X
so the line y = e is a horizontal asymptote for f in both the positive and negative directions.
<

LIMIT LAWS FOR LIMITS AT INFINITY

It can be shown that the limit laws in Theorem 1.2.2 carry over without change to limits at
4o and —o. Moreover, it follows by the same argument used in Section 1.2 that if n is a
positive integer, then

Jim (fG)" = (ﬁ“lm f(x)> Jim (£ = (Xgngm f(x)> 9-10)

provided the indicated limit of f(x) exists. It also follows that constants can be moved
through the limit symbols for limits at infinity:

lim kf(x) =k lim f(x) lim kf(x) =k lim f(x) (11-12)

X — 4+

provided the indicated limit of f(x) exists.
Finally, if f(x) = k is a constant function, then the values of f do not change as x — +»
or as x — —, SO

lim k =k lim k =k (13-14)

X — oo X —> —0

» Example 4
(a) It follows from (1), (2), (9), and (10) that if n is a positive integer, then

1 .1\ o1 o1\
Iim — = lim — ) =0 and Iim —={ Ilim - ) =0
x— +o0o x" x— 40w X x— —oo x xX—>—© X

(b) It follows from (7) and the extension of Theorem 1.2.2(e) to the case x — +oo that

1\ 1 2% 1/2
lim (14+=—) = Ii 14 —
xam+loc< +2x) xirgw[< +2x) i|
1 2x 172
:|:lin+1 (1+2—) } =el?= /e «
X — +oo X
INFINITE LIMITS AT INFINITY

Limits at infinity, like limits at a real number a, can fail to exist for various reasons. One
such possibility is that the values of f(x) increase or decrease without bound as x — +oo
or as x — —oo. We will use the following notation to describe this situation.



1.3 Limits at Infinity; End Behavior of a Function 91

1.3.2 INFINITE LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x)
increase without bound as x — 4 or as x — —oo, then we write

linJ} f(x) =40 or lin} f(x) =+
as appropriate; and if the values of f(x) decrease without bound as x — +oo or as

x — —oo, then we write

lim f(x) =—c or lim f(x)=—c

X — 4o

as appropriate.

M LIMITS OF x" AS X — +oo
Figure 1.3.5 illustrates the end behavior of the polynomials x” forn = 1, 2, 3, and 4. These
are special cases of the following general results:

—o, n=1,3,5,...
lim x" =+, n=1,2,3,... lim x" = ’ A 15-16
x— +oo x— —o 4o, n=2,4,6,... ( )
y y y y
_ 4
8 8 8 |y=x3 gp [Y=X
I y=x B y:X2 B B
| | X | | X | | X | | X
“4 4 —4 4 —4 4 —4 4
-8 -8 -8 -8
lim X = +oo lim X2 = +oo lim x3 = +oo lim x4 = +co
X—>+oo X—>+oo X—>+oo X—+o0
lim X = —oo lim x2 = +oco lim x3=—co lim x* = +oo
X——o00 X—>—oo X—>—o0 X——o0

A Figure 1.3.5

Multiplying x" by a positive real number does not affect limits (15) and (16), but mul-
tiplying by a negative real number reverses the sign.

» Example 5

lim 2x° = +oo, lim 2x° = —
X — 4o X — —©

lim —7x® = —oo, lim —7x% = —» <
X —>+®© X —> —0©

M LIMITS OF POLYNOMIALS AS X — +x
There is a useful principle about polynomials which, expressed informally, states:

The end behavior of a polynomial matches the end behavior of its highest degree term.
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More precisely, if ¢, # 0, then

lim (co +cox 4+ cnx") = lim c¢,x" (17)
lim (co +cx+ -+ cnx") = lim c¢,x" (18)
X —> 4o X —> +0©

We can motivate these results by factoring out the highest power of x from the polynomial
and examining the limit of the factored expression. Thus,

Co C1
— +

xn xnfl

co+clx+~~+cnx”=x”( +"'+Cn>

As x — —o or x — oo, it follows from Example 4(a) that all of the terms with positive
powers of x in the denominator approach 0, so (17) and (18) are certainly plausible.

» Example 6

lim (7x° —4x* +2x —9) = lim 7x° = —=»

li
X —> —0 X —> —0

lim (—4x®+17x* =5x + 1) = lim —4x® = —x «

X — —© X — —©

LIMITS OF RATIONAL FUNCTIONS AS x — +x

One technique for determining the end behavior of a rational function is to divide each term
in the numerator and denominator by the highest power of x that occurs in the denomi-
nator, after which the limiting behavior can be determined using results we have already
established. Here are some examples.

3 5
» Example 7 Find lim s .
x—>+» 6x — 8

Solution. Divide each term in the numerator and denominator by the highest power of
x that occurs in the denominator, namely, x! = x. We obtain

5
. 3x+5 .3t x
lim = lim Divide each term by x.
x—>+oo6x—8 x—>+oc6 8
X
) 5
lim (3 + -
Xt X Limit of a quotient is the
- 8 quotient of the limits.
lim |6— —
X — 4o X

5
lim 3+ lim —
X — +oo X—+o X Limit of a sum is the
sum of the limits.

lim 6 — lim —
X —> +0 X—>+® X

1
345 lim —
_ X—>4oox 3+0 _ l A constant can be moved through a <
- . 1 7 6-0 2 limit symbol; Formulas (2) and (13).
6—8 lim —

X — 4o X
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» Example 8 Find

4x% — 5x3 —2x2 41
(a) lim Mo x (b) lim X+l
x—>—02x3 —5 x>+ 1 —3x

Solution (a). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x3. We obtain

4 1
o 4x?—x . X  x2
lim ———— = lim Divide each term by x3.
x—>-»2x3 — 5§ X——o 5
X3
. 1
lim |- — =
_AomEAXe X Limit of a quotient is the
5 quotient of the limits.
lim {2—-—
X — —© X3
. . 1
lim —— lim —
X—>—*X X—>—»X Limit of a difference is the

. . difference of the limits.
lim 2 — lim —

X —> —© X—> —0 X
.1 . 1
4 Al_l)II_lw ; - xgn_lw x_ 0—0 A constant can be moved through
= 1 = 5 0 =0 a limit symbol; Formula (14) and
2 -5 lim — Example 4.
X—>—x X

Solution (b). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x! = x. We obtain

1
S5x3 —2x2 +1 5x% = 2x + —
lim ———— = lim ———X
X —> +oo 1 —3x X —> +o 1
-3
X

In this case we cannot argue that the limit of the quotient is the quotient of the limits because
the limit of the numerator does not exist. However, we have

19)

1 1

lim 5x* —2x =40, lim —=0, lim (— — 3) = -3
X — 4o X =+ x x—> 4% \ X

Thus, the numerator on the right side of (19) approaches +oo and the denominator has a

finite negative limit. We conclude from this that the quotient approaches —oc; that is,

1
53 —2x2 4 1 S —2x+ o
lim ——— = lim ——— X = —» «
X — +oo 1—3x X — +oo 23

X

B A QUICK METHOD FOR FINDING LIMITS OF RATIONAL FUNCTIONS AS x — +x
OR X — —x
Since the end behavior of a polynomial matches the end behavior of its highest degree term,
one can reasonably conclude:

The end behavior of a rational function matches the end behavior of the quotient of
the highest degree term in the numerator divided by the highest degree term in the
denominator.
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» Example 9 Use the preceding observation to compute the limits in Examples 7 and 8.

Solution.
. 3x+5 . 3x o1
lim = lim — = lim - = —
x—>+o6x —8 x—>+obx x—+o2 2
4x? — 4x? 2
im % — fim 2= = lim Z=0
x>0 2x3 =5 x——2x3  x—-wyx
. Sxd—2xr 41 5x3 . 5,
llm —_— = 1 = hm —=X = —o0o <
x— oo 1—3x x—>+4o (=3x) x>+ 3
Il LIMITS INVOLVING RADICALS
» Example 10 Find
VxZ42 Vx2 42
@ lim Y22 by lim X2
x—+o 3x —6 x—-—» 3x —6

In both parts it would be helpful to manipulate the function so that the powers of x are
transformed to powers of 1/x. This can be achieved in both cases by dividing the numerator
and denominator by |x| and using the fact that v/x2 = |x]|.

Solution (a). As x — +oo, the values of x under consideration are positive, so we can
replace |x| by x where helpful. We obtain

x2 42 VX242
R S e =
Jm e =M e = im 5T
x| X
2 , 2
1+—2 lim l—l-—2
_ llm X — X —> +®© X
X —> +oo 6 6
a2 lim (3——)
X — +o X
im (14 2 lim 1 > lim
Jim (1) [ Climo )+ (2 pim
- 6\ 1
lim (3——) ( lim 3)—(6 lim —)
X — 4o X x— 4% x— 4% x
O
3—-(6-0) 3

Solution (b). As x — —o, the values of x under consideration are negative, S0 we can

It follows from Example 10 that the
function

VxZ 42
3x —6

fx) =

1

has an asymptote of y = 3 in the
positive direction and an asymptote of
y= —% in the negative direction.
Confirm this using a graphing utility.

replace |x| by —x where helpful. We obtain

x242 x2 42
gim Y2 g P i
x| (=x)
J1 eri2
= Jim ——F =-3 <

34 =
X
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» Example 11 Find

(a) 1in+1 (Vx6+5—x%) (b) lin+1 (Vx6 +5x3 — x3)

Solution. Graphs of the functions f(x) = +/x%+5 — x>, and g(x) = v/x6 + 5x3 — x3
x  forx > 0, are shownin Figure 1.3.6. From the graphs we might conjecture that the requested

1 2 3 4 limits are 0 and %, respectively. To confirm this, we treat each function as a fraction with a
denominator of 1 and rationalize the numerator.

/+-6 5 3
lim (V¥®+5—x%) = lim (\/x6+5—x3)< i +x)

y=Vx®+5-x3 VxO 45+ x3
@) — lim M — lim 3
y X — +o /x6+5+x3 X —> +x /x6+5+x3
al 5
3
3+ y:§ = lim X Vx6 =x3forx >0
.2 X — +» 5
2L 1+ 3 +1
X
1+ 0
| | | | | X = /1 0 1 =0
-1 1 2 3 4 +0+
af Nrgar=ige
li 64 5x3 —x3) = i 6 4 5x3 — 3
xirgw(\/x +5x3 — x7) xirrjm(\/x +5x° —x7) Nraa =
y=Vx8+5x3-x3 x>0 ; (x® + 5x3) — x6 ; 553
= lim —— = lim ——
(b) x~>+00,/x6+5x3 +x3 X — +o /x6+5x3 +X3
A Figure 1.3.6 5
= 111’2 —_— Vx6 =x3forx >0
X —> +>©
We noted in Section 1.1 that the stan- 1+ F +1
dard rules of algebra do not apply to 5 5
the symbols +c and —o. Part (b) of -——— - I 4
Example 11 illustrates this. The terms J1T4+H0+1 2

+/x% 4 5x3 and x> both approach -+
as x — oo, but their difference does
not approach 0.

There is no limit as . A .
X —> 400 Of X —> —oo. x — oo (Figures 0.5.8 and 0.5.9). Thus, in limit notation we have
A Figure 1.3.7 lim Inx =+ lim e* = +o (20-21)
X —> 4o x =t

Il END BEHAVIOR OF TRIGONOMETRIC, EXPONENTIAL,

AND LOGARITHMIC FUNCTIONS
Consider the function f(x) = sinx that is graphed in Figure 1.3.7. For this function the
limits as x — o0 and as x — —oo fail to exist not because f(x) increases or decreases
without bound, but rather because the values vary between —1 and 1 without approaching
some specific real number. In general, the trigonometric functions fail to have limits as
Xx — o0 and as x — —oe because of periodicity. There is no specific notation to denote this
kind of behavior.

In Section 0.5 we showed that the functions e* and In x both increase without bound as

For reference, we also list the following limits, which are consistent with the graphs in

Figure 1.3.8:
lim ¢ =0 lim Inx = — (22-23)

X —> —© x—0*
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/1 /1
s
s
s
s

A Figure 1.3.8

A Figure 1.3.9

Finally, the following limits can be deduced by noting that the graph of y = e is the
reflection about the y-axis of the graph of y = ¢* (Figure 1.3.9).

lim e =0 lim e~ = 4o (24-25)
X—> —
VQUICK CHECK EXERCISES 1.3  (See page 100 for answers.)
1. Find the limits. 3. Given that
@ lm §-x) = lim f()=2 and lim g(x)=-3

2.

EXERCISE SET 1.3

1
(b) lim (5 - —) =_
X —> 400 X
) lim [ ! =
(c xinlm n T)=—
. 1
d Iim —=___
x— 4o X
Find the limits that exist.
202+ x
lim — =
(@ tm, a2 =3
b Iim —m=____
x—+o 2 4 sinx

1 X
(¢) lim (l + —) =
X —> 4w X

™ Graphing utility

find the limits that exist.
@ lim [3/()—g(@)]=—

o fe)
®) x1—1>nloo g(x) -
2£(0) +3g(x)
(©) YIRS

x>t 3f(x) +28(x)

@ tim 10— fg() =—

. Consider the graphs of 1/x, sinx, In x, ¢*, and e™*. Which

of these graphs has a horizontal asymptote?

1-4 In these exercises, make reasonable assumptions about the
end behavior of the indicated function.

1.

For the function g graphed in the accompanying figure, find
@ lim g(x) (b) lim g(x).
xX— —o0 X — 4w

Y y =9(x)

< Figure Ex-1

. For the function ¢ graphed in the accompanying figure, find

@ lim ¢
() lim $(x).

A

ST ST

¥ <

-2

< Figure Ex-2



3. For the function ¢ graphed in the accompanying figure, find

(@ lim ¢(x) (b) lim ¢ (x).

y y=¢(x)

I
- 4

~ <A Figure Ex-3

4. For the function G graphed in the accompanying figure, find

(@ lim G(x) (b) lim G(x).

y y =G(X)

< Figure Ex-4

5. Given that

lim f(x)=3, lim gx)=-5 lim h(x)=0
x— +oo x—>+o X — +oo

find the limits that exist. If the limit does not exist, explain
why.

(@) lim [f(x)+3g(x)]

(b) xgr{lkx [A(x) —4g(x) + 1]

(©) lim [f(x)g(x)]

(e) lim I5+ fx)

@ lim [gn)]

)

1m
e g(x)

_ 3h(x)+4 : 6/
(® lim ——— ® 0. 570 + 350
. Given that

lim f(x)=7 and lim g(x)=—-6
X —> —© X—> —x

find the limits that exist. If the limit does not exist, explain
why.
(@) XEH}OC [2f(x) — g(x)]

(© [lim [x*+g(x)]

(b) lim [6f(x) +7g(x)]
@ lim [x*g(x)]

© lim Jf()gk) (£ lim %
. g(0) i )

7. (a) Complete the table and make a guess about the limit

indicated.

Ff(x) = tan™! (1> lim f(x)
X x—0t

0.01 | 0.001 | 0.0001 | 0.00001 | 0.000001

f(x)
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(b) Use Figure 1.3.3 to find the exact value of the limit in

part (a).
8. Complete the table and make a guess about the limit indi-
cated.
f@)y=x"* lim f(x)
X —> 4
X | 10 | 100 | 1000 | 10,000 | 100,000 | 1,000,000
f(x)
9-40 Find the limits.
9. lim (14 2x —3x%) 10. lim (2x* — 100x + 5)
X — +x X —> +
11. lim /x 12. lim +/5—x
X — 4o X —> —00
1 24
3. lim 2T 14, lim X%
x—>+22x — 5 x—>+o 2x2 4+ 3
15. lim —— 16. lim
yo—=y+4 x—>+ox — 12
-2 5x2 47
17. lim —— = 18, 1im 22 F
x—> - x2 4 2x + 1 x—>+23x2 — x
_ 5 143
19. lim =% 20 lim 2
x—>+o x4+ 3 f—> —o [2+]
6—13 4x3
21. lim 2. lim
t—>+40 73+ 3 x—>— | —x2 4 7x3
o) _ 5,2 7 _ 4g5
23, lim J2F3xX =% 24, lim 3%
x— oo 1+ 8x2 s—+o |\ 257 41
/5x2 — 2 22
25, lim Y2X 2 2. lim Y
x—>-»o x43 x—>+4+o x+3
. 2—y . 2—y
27. lim ——— 28. lim ———
y—>—® 7+6y2 y—> 7+6y2
o WBxt4x V3x4+x
29. lim ———— 30. _—
xX— —® x2—8 X — +» x2_8
31. lim (vVx2+3—x) 32. liHl (Vx%2—=3x—x)
1—¢" 1—¢"
3. i ¢ 34. lim — ¢
x—>-—w | 4 ¥ x—>+40o | 4 e
35. lim < 1° 36. lim ¢
x>+ et — et x> —wet —e¥
. 2 . 2
37. lim In| — 38. Iim In( —
X— 4 x2 x—0* x2
1)* I\
39, fim XD 40. lim (1 + 7>
X —>+» X

41-44 True-False Determine whether the statement is true or
false. Explain your answer.

41.

We have lim

X — +oo

1 2x
(1+*> =(1+0)"=1"=1.
X
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42. If y = L is a horizontal asymptote for the curve y = f(x),
then

lin_l f(x)=L and linl f(x)y=1L

43. If y = L is a horizontal asymptote for the curve y = f(x),
then it is possible for the graph of f to intersect the line
y = L infinitely many times.

44. If arational function p(x)/q(x) has a horizontal asymptote,
then the degree of p(x) must equal the degree of g (x).

FOCUS ON CONCEPTS

45. Assume that a particle is accelerated by a constant force.
The two curves v = n(¢) and v = e(¢) in the accompa-
nying figure provide velocity versus time curves for the
particle as predicted by classical physics and by the spe-
cial theory of relativity, respectively. The parameter ¢
represents the speed of light. Using the language of lim-
its, describe the differences in the long-term predictions
of the two theories.

v =n(t)
(Classical)
v =e(t)
(Relativity)

(¢}

*
|
|

Velocity

Time <« Figure Ex-45

46. Let T = f(t) denote the temperature of a baked potato
¢t minutes after it has been removed from a hot oven.
The accompanying figure shows the temperature versus
time curve for the potato, where r is the temperature of
the room.

(a) What is the physical significance of lim,_, o+ f(¢)?
(b) What is the physical significance of lim, _, 4o f(¢)?

T
& 40
<
: T=1(t)
IS
li) re——————mw—-—_—"—>=——
t
Time (min) < Figure Ex-46
47. Let
2x% 45, x <0
= 3 —5x3
Sx) o iso0
1+4x +x3
Find

@ lim f(x) (b) lim f(x).

48. Let
243t
ZHr , ¢ < 1,000,000
o) = 5t2+6
=1 /e =100
Y . ¢ > 1,000,000
5—t
Find

(@) lim g(r) (b) [gngmg(t).

49. Discuss the limits of p(x) = (1 —x)" as x — 4o and
x — —oo for positive integer values of n.
50. In each part, find examples of polynomials p(x) and ¢g(x)

that satisfy the stated condition and such that p(x) — +o
and g (x) — +o as x — o0,

@ lim %:1 (b) lim pgx; —0
x—>+o g(x X—> 4w g(Xx
. p(x) : _
(©) Xlinlm 7 +oo (d xlinlm[l?(x) —qx)]=3

51. (a) Do any of the trigonometric functions sin x, cos x, tan x,
cot x, sec x, and csc x have horizontal asymptotes?
(b) Do any of the trigonometric functions have vertical
asymptotes? Where?

52. Find .
. cotcex+ -+ cpx
lim

X — 4o do —|—d1X + .- —I—dmx'"

where ¢, # 0 and d,, # 0. [Hint: Your answer will depend
on whetherm < n,m =n,orm > n.]

FOCUS ON CONCEPTS

53-54 These exercises develop some versions of the sub-
stitution principle, a useful tool for the evaluation of limits.

53. (a) Explain why we can evaluate lim, _, ;. e by mak-
ing the substitution t = x? and writing

. 2 .
lim ¢ = lim e = 4w
X — 4+ t— 4+

(b) Suppose g(x)— +o as x— 4. Given any
function f(x), explain why we can evaluate
lim, _ . f[g(x)] by substituting t = g(x) and
writing

Jlim flg(0] = lim ()

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if lim,_, 1. is replaced everywhere by one of
lim, _, _o, lim, _, ., lim, _, .-, or lim, _, .+?

54. (a) Explain why we can evaluate lim,_, o e by

making the substitution # = —x? and writing
. 2 .
lim e = lim ¢ =0 (cont)
X — 4o t— —



(b) Suppose g(x)— —o as x—+o. Given any
function f(x), explain why we can evaluate
lim, _ 1 f[g(x)] by substituting t = g(x) and
writing

Jlim flg()] = lim_ (o)

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if lim,_, . is replaced everywhere by one of
lim, _, _o, limy_, ., lim,_, .—, or lim, _, .+?

55-
5S.

57.

59.
60.

61.

62.
63.

64.

K~ 6s.

1 66.

62 Evaluate the limit using an appropriate substitution.

lim e'/* 56. lim e
x— 0+ x—0"
lim ¥ 58. lim e
x—0t x—0-
. n2x .
lim [Hint: t = Inx]
x—+= In3x
1im+ (n(x> — 1) — In(x + )] [Hint: t = x — 1]
X —> +oo

1 —x
lim <1 — 7> [Hint: t = —x]

X — 4o X

. 2\" .
lim (1 + 7> [Hint: t = x/2]
X

X —> +oo

Let f(x) = b, where O < b. Use the substitution principle

to verify the asymptotic behavior of f that is illustrated in

Figure 0.5.1. [Hint: f(x) = b* = (e?)* = eInb)¥]

Prove that lim,_, o(1 + x)/* = e by completing parts (a)

and (b).

(a) Use Equation (7) and the substitution = 1/x to prove
that lim, _, o+ (1 + x)'/* = e.

(b) Use Equation (8) and the substitution = 1/x to prove
that lim, _, o~ (1 + x)!/* = e.

Suppose that the speed v (in ft/s) of a skydiver ¢ sec-
onds after leaping from a plane is given by the equation
v =190(1 — ¢ 01687,

(a) Graph v versus ¢.

(b) By evaluating an appropriate limit, show that the graph
of v versus ¢ has a horizontal asymptote v = ¢ for an
appropriate constant c.

(c) What is the physical significance of the constant ¢ in
part (b)?

The population p of the United States (in millions) in year ¢

can be modeled by the function

525
p@) = 1 + 1.1 0.02225(—1990)

(a) Based on this model, what was the U.S. population in
19907

(b) Plot p versus ¢ for the 200-year period from 1950 to
2150.
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(c) By evaluating an appropriate limit, show that the graph
of p versus ¢ has a horizontal asymptote p = ¢ for an
appropriate constant c.

(d) What is the significance of the constant c in part (c) for
the population predicted by this model?

67. (a) Compute the (approximate) values of the terms in the
sequence

1.01'°", 1.001'%", 1.0001'%00! ' 1.00001 00001
1.000001 1900001 "1 0000001 10000001,

What number do these terms appear to be approaching?
(b) Use Equation (7) to verify your answer in part (a).
(c) Let 1 < a < 9 denote a positive integer. What number
is approached more and more closely by the terms in
the following sequence?

1,012, 1,00140041,00019%%, 1,000019%0004
1.000001409%00¢ 1 00000014000000a

(The powers are positive integers that begin and end
with the digit @ and have 0’s in the remaining positions).
1 X
68. Let f(x) = (1 + 7) .
x
(a) Prove the identity
X
f=x)=——-fx—1)
x—1
(b) Use Equation (7) and the identity from part (a) to prove
Equation (8).

] 69-73 The notion of an asymptote can be extended to include

curves as well as lines. Specifically, we say thatcurves y = f(x)
and y = g(x) are asymptotic as x — + o provided

lim [f(x) —g(x)]=0
X — 4o
and are asymptotic as x — — o provided
lim [f(x) = g()] =0

In these exercises, determine a simpler function g(x) such that
y = f(x) is asymptotic to y = g(x) as x — 4 or x — —o.
Use a graphing utility to generate the graphs of y = f(x) and
y = g(x) and identify all vertical asymptotes.

2

2
69. f(x)="> — [Hin: Divide x — 2 into x> —2.]
P
3
—x+3
70. f(x)zﬁ
_ 43 3 2 -1
. f(x) = X7 +3x"+x
x—3
X —x34+3

2 f0) =5

73. f(x) =sinx + ;
x—1
74. Writing In some models for learning a skill (e.g., juggling),
it is assumed that the skill level for an individual increases
with practice but cannot become arbitrarily high. How do
concepts of this section apply to such a model?



100 Chapter 1 / Limits and Continuity

75. Writing In some population models it is assumed that a capacity tend to increase toward L. Explain why these as-
given ecological system possesses a carrying capacity L. sumptions are reasonable, and discuss how the concepts of
Populations greater than the carrying capacity tend to de- this section apply to such a model.

cline toward L, while populations less than the carrying

l/ QUICK CHECK ANSWERS 1.3

1. (@) 4o (b) 5 (¢) —o (d) 0 2. (a) % (b) does notexist (¢c) e 3. (a) 9 (b) —% (c) does not exist (d) 4
4. 1/x, %, and e~ each has a horizontal asymptote.

m LIMITS (DISCUSSED MORE RIGOROUSLY)

In the previous sections of this chapter we focused on the discovery of values of limits,
either by sampling selected x-values or by applying limit theorems that were stated
without proof. Our main goal in this section is to define the notion of a limit precisely,
thereby making it possible to establish limits with certainty and to prove theorems about
them. This will also provide us with a deeper understanding of some of the more subtle
properties of functions.

Il MOTIVATION FOR THE DEFINITION OF A TWO-SIDED LIMIT

The statement lim, _, , f(x) = L canbe interpreted informally to mean that we can make the
value of f(x) as close as we like to the real number L by making the value of x sufficiently
close to a. It is our goal to make the informal phrases “as close as we like to L” and
“sufficiently close to a” mathematically precise.

To do this, consider the function f graphed in Figure 1.4.1a for which f(x)— L as
x — a. For visual simplicity we have drawn the graph of f to be increasing on an open
interval containing a, and we have intentionally placed a hole in the graph at x = a to
emphasize that f need not be defined at x = a to have a limit there.

y y = f(x) y y = f(x)
L+elr oo L+el

| f(x) |
L 7 | o \ |
/ | el 1|

L . I X
Xo a X1 Xo a X X1

(a) (b) (c)

A Figure 1.4.1

Next, let us choose any positive number € and ask how close x must be to a in order
for the values of f(x) to be within € units of L. We can answer this geometrically by
drawing horizontal lines from the points L + € and L — € on the y-axis until they meet the
curve y = f(x), and then drawing vertical lines from those points on the curve to the x-axis
(Figure 1.4.1b). As indicated in the figure, let xy and x; be the points where those vertical
lines intersect the x-axis.
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X
=

X, a-8 a a+s
A Figure 1.4.2

The definitions of one-sided limits re-
quire minor adjustments to Defini-
tion 1.4.1. For example, for a limit from
the right we need only assume that
f(x) is defined on an interval (a, b)
extending to the right of a and that
the € condition is met for x in an in-
terval a < x < a + § extending to the
right of a. A similar adjustment must
be made for a limit from the left. (See
Exercise 27.)
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Now imagine that x gets closer and closer to a (from either side). Eventually, x will
lie inside the interval (xg, x;), which is marked in green in Figure 1.4.1c; and when this
happens, the value of f(x) will fall between L — € and L + €, marked in red in the figure.
Thus, we conclude:

If f(x)— L as x — a, then for any positive number €, we can find an open interval
(x0, X1) on the x-axis that contains a and has the property that for each x in that
interval (except possibly for x = a), the value of f(x) is between L — € and L + €.

What is important about this result is that it holds no matter how small we make e.
However, making € smaller and smaller forces f(x) closer and closer to L—which is
precisely the concept we were trying to capture mathematically.

Observe that in Figure 1.4.1 the interval (x(, x;) extends farther on the right side of a
than on the left side. However, for many purposes it is preferable to have an interval that
extends the same distance on both sides of a. For this purpose, let us choose any positive
number § that is smaller than both x; — a and a — x(, and consider the interval

(a—46,a+9d)

This interval extends the same distance § on both sides of a and lies inside of the interval
(x0, x1) (Figure 1.4.2). Moreover, the condition

L—e< f(x)<L+e (1)

holds for every x in this interval (except possibly x = a), since this condition holds on the
larger interval (xg, x1).
Since (1) can be expressed as
lf(x) —L| <€

and the condition that x lies in the interval (@ — 8, a + §), but x # a, can be expressed as
O<lx—al<$é

we are led to the following precise definition of a two-sided limit.

1.4.1 viMIT DEFINITION Let f(x) be defined for all x in some open interval con-
taining the number a, with the possible exception that f(x) need not be defined at a.

We will write
lim f(x) =L

if given any number € > 0 we can find a number § > 0 such that

|[f(x)— Ll <e if O<|x—al<$

This definition, which is attributed to the German mathematician Karl Weierstrass and
is commonly called the “epsilon-delta” definition of a two-sided limit, makes the transition
from an informal concept of a limit to a precise definition. Specifically, the informal phrase
“as close as we like to L” is given quantitative meaning by our ability to choose the positive
number € arbitrarily, and the phrase “sufficiently close to a” is quantified by the positive
number §.

In the preceding sections we illustrated various numerical and graphical methods for
guessing at limits. Now that we have a precise definition to work with, we can actually
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confirm the validity of those guesses with mathematical proof. Here is a typical example
of such a proof.

» Example 1 Use Definition 1.4.1 to prove that 1im2 (Bx —5)=1.

Solution. 'We must show that given any positive number €, we can find a positive number
8 such that .
|Bx—=5)—1|<e if O<|x—2]<$ 2)
—— ~~ ~
fx) L a

There are two things to do. First, we must discover a value of § for which this statement
holds, and then we must prove that the statement holds for that §. For the discovery part
we begin by simplifying (2) and writing it as

3x —6l<e if O<|x—=2|<$

Next we will rewrite this statement in a form that will facilitate the discovery of an appro-

priate &:
3lx —2| <€

x —2| <€/3

if O0<jx—2|<$
if 0<x—2|<$

3

It should be self-evident that this last statement holds if § = €/3, which completes the
discovery portion of our work. Now we need to prove that (2) holds for this choice of 4.
However, statement (2) is equivalent to (3), and (3) holds with § = €/3, so (2) also holds
with § = /3. This proves that lim2 Bx=5=1. «

This example illustrates the general form of a limit proof: We assume that we are given a positive
number ¢, and we try to prove that we can find a positive number § such that

|fx)—Ll<e if 0<|x—al<d “)

This is done by first discovering &, and then proving that the discovered § works. Since the argument
has to be general enough to work for all positive values of ¢, the quantity § has to be expressed as a
function of €. In Example 1 we found the function § = /3 by some simple algebra; however, most
limit proofs require a little more algebraic and logical ingenuity. Thus, if you find our ensuing discussion
of “e-3" proofs challenging, do not become discouraged; the concepts and techniques are intrinsically
difficult. In fact, a precise understanding of limits evaded the finest mathematical minds for more than
150 years after the basic concepts of calculus were discovered.

Karl Weierstrass (1815-1897) Weierstrass, the son of a

~ customs officer, was born in Ostenfelde, Germany. As a
youth Weierstrass showed outstanding skills in languages

and mathematics. However, at the urging of his domi-

nant father, Weierstrass entered the law and commerce

program at the University of Bonn. To the chagrin of his

family, the rugged and congenial young man concentrated instead
on fencing and beer drinking. Four years later he returned home
without a degree. In 1839 Weierstrass entered the Academy of
Miinster to study for a career in secondary education, and he met
and studied under an excellent mathematician named Christof Gud-
ermann. Gudermann’s ideas greatly influenced the work of Weier-
strass. After receiving his teaching certificate, Weierstrass spent the
next 15 years in secondary education teaching German, geography,
and mathematics. In addition, he taught handwriting to small chil-
dren. During this period much of Weierstrass’s mathematical work

was ignored because he was a secondary schoolteacher and not a
college professor. Then, in 1854, he published a paper of major
importance that created a sensation in the mathematics world and
catapulted him to international fame overnight. He was immediately
given an honorary Doctorate at the University of Konigsberg and
began a new career in college teaching at the University of Berlin
in 1856. In 1859 the strain of his mathematical research caused
a temporary nervous breakdown and led to spells of dizziness that
plagued him for the rest of his life. Weierstrass was a brilliant
teacher and his classes overflowed with multitudes of auditors. In
spite of his fame, he never lost his early beer-drinking congeniality
and was always in the company of students, both ordinary and bril-
liant. Weierstrass was acknowledged as the leading mathematical
analyst in the world. He and his students opened the door to the
modern school of mathematical analysis.

[Image: http://commons.wikimedia.org/wiki/File:Karl_Weierstrass.jpg)



In Example 2 the limit from the left
and the two-sided limit do not exist at
x = 0 because +/x is defined only for
nonnegative values of x.

s s \

- \
a-8 a-8,a a+d, a+to
A Figure 1.4.3

If you are wondering how we knew
to make the restriction § < 1, as op-
posedto§ < 5ord < %, for example,
the answer is that 1 is merely a con-
venient choice—any restriction of the

form § < ¢ would work equally well.
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» Example 2 Prove that lirr&+ Jx =0.
xX—

Solution. Note that the domain of /x is 0 < x, so it is valid to discuss the limit as
x — 0%, We must show that given € > 0, there exists a § > 0 such that
[Vx—0<e if 0<x—0<3$§
or more simply,
Jx<e if 0<x<3$ 5)

But, by squaring both sides of the inequality ,/x < €, we can rewrite (5) as
x<e if 0<x<3$ (©6)

It should be self-evident that (6) is true if § = €2; and since (6) is a reformulation of (5),
we have shown that (5) holds with § = €2. This proves that lin(} Jx=0. «
x— 0t

THE VALUE OF § IS NOT UNIQUE

In preparation for our next example, we note that the value of § in Definition 1.4.1 is not
unique; once we have found a value of § that fulfills the requirements of the definition, then
any smaller positive number §; will also fulfill those requirements. That is, if it is true that

|[f(x)— Ll <e if O<|x—al<$
then it will also be true that
|[fx)—Ll<e if 0<|x—al <

This is because {x : 0 < [x —a| < §;}is asubset of {x : 0 < |x — a| < §} (Figure 1.4.3),
and hence if | f(x) — L| < € is satisfied for all x in the larger set, then it will automatically
be satisfied for all x in the subset. Thus, in Example 1, where we used § = €/3, we could
have used any smaller value of § such as § = €/4, 5 = ¢/5, 0r § = €/6.

» Example 3 Prove that lim3 x*=09.
Xx—

Solution. 'We must show that given any positive number €, we can find a positive number
8 such that
=9 <e if O0<|x—3] <6 0)

Because |x — 3] occurs on the right side of this “if statement,” it will be helpful to factor the
left side to introduce a factor of |x — 3|. This yields the following alternative form of (7):

lx+3|lx =3 <e if O<|x—3|<$é ®)

We wish to bound the factor |x + 3|. If we knew, for example, that § < 1, then we would
have —1 <x —3 < 1,505 < x+ 3 <7, and consequently |x + 3| < 7. Thus, if § <1
and 0 < |x — 3| < §, then

[x +3llx=3] <76

It follows that (8) will be satisfied for any positive 6 such that § < 1 and 7§ < €. We can
achieve this by taking § to be the minimum of the numbers 1 and €/7, which is sometimes
written as § = min(1, €/7). This proves that lirn3 x’=9. <

B LIMITS AS x — £

In Section 1.3 we discussed the limits

_linJ} f(x)=L and _1in_1 fx)=1L
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from an intuitive point of view. The first limit can be interpreted to mean that we can make
the value of f(x) as close as we like to L by taking x sufficiently large, and the second can
be interpreted to mean that we can make the value of f(x) as close as we like to L by taking
x sufficiently far to the left of 0. These ideas are captured in the following definitions and

are illustrated in Figure 1.4.4.

1.4.2 DEFINITION Let f(x) be defined for all x in some infinite open interval ex-
tending in the positive x-direction. We will write

im0 =1L

if given any number € > 0, there corresponds a positive number N such that

If(x) =Ll <e

if x>N

1.4.3 DEFINITION Let f(x) be defined for all x in some infinite open interval ex-
tending in the negative x-direction. We will write

lim f(x)=L

if given any number € > 0, there corresponds a negative number N such that

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x)— L as x — +oo, and for a given € let N be the positive number described in
Definition 1.4.2. If x is allowed to increase indefinitely, then eventually x will lie in the
interval (N, +o0), which is marked in green in Figure 1.4.4a; when this happens, the value
of f(x) will fall between L — € and L + €, marked in red in the figure. Since this is true
for all positive values of € (no matter how small), we can force the values of f(x) as close
as we like to L by making N sufficiently large. This agrees with our informal concept of

[f(x) =L <€

if x<N

this limit. Similarly, Figure 1.4.4b illustrates Definition 1.4.3.

Y y
L+€/[‘\\T 77777777777777777 rl[.\ L+e
| |
f(x)L { 7 N —\ E(X)
L-el-—f————A\—— i A M —L-€
| |
| |

I X I X
N X —>» <« X N
[f)—Ll<eifx>N [f(X)—Ll<eifx<N
(@ (b)
A Figure 1.4.4

- . 1
» Example 4 Prove that lim — = 0.

X — 40 X



(@)

fx)<MifO<|x-a]<é

(b)

A Figure 1.4.5

How would you define these limits?

lim f(x) = 4o
x—at

lim f(x) = 4o
x—a-

lim f(x) = 4o
X — +x

lim f(x) =+x
xX—> —»

lim f(x) = —o0
x—at
lim f(x) = —o

Jim f(x) = —eo

lim  f(x) = —co
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Solution. Applying Definition 1.4.2 with f(x) = 1/x and L = 0, we must show that
given € > 0, we can find a number N > 0 such that

1
- -0
X

<e if x> N )

Because x — +o0 we can assume that x > 0. Thus, we can eliminate the absolute values in
this statement and rewrite it as

1
—<e if x>N
X
or, on taking reciprocals,
1
x>—- if x>N (10)
€

Itis self-evident that N = 1/¢ satisfies this requirement, and since (10) and (9) are equivalent
for x > 0, the proof is complete. <«

INFINITE LIMITS
In Section 1.1 we discussed limits of the following type from an intuitive viewpoint:

lim f(x) = o=, lim f(x) = — (11
lim f(x) = e, lim f(x) = - (12)
lim f(x) = +oo, lim f(x) = —o (13)

Recall that each of these expressions describes a particular way in which the limit fails to
exist. The 4o indicates that the limit fails to exist because f(x) increases without bound,
and the —cc indicates that the limit fails to exist because f(x) decreases without bound.
These ideas are captured more precisely in the following definitions and are illustrated in
Figure 1.4.5.

1.4.4 pEFINITION Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim f(x) =+
if given any positive number M, we can find a number § > 0 such that f(x) satisfies

fe)>M if O<|x—al<$

1.4.5 DEFINITION Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write
lim f(x) = —

X—>da

if given any negative number M, we can find a number § > 0 such that f(x) satisfies

fx)y <M if O<|x—al<$

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x) — 40 as x — a, and for a given M let § be the corresponding positive number
described in Definition 1.4.4. Next, imagine that x gets closer and closer to a (from ei-
ther side). Eventually, x will lie in the interval (a — §, a 4+ §), which is marked in green
in Figure 1.4.5a; when this happens the value of f(x) will be greater than M, marked inred in
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the figure. Since this is true for any positive value of M (no matter how large), we can force
the values of f(x) to be as large as we like by making x sufficiently close to a. This agrees
with our informal concept of this limit. Similarly, Figure 1.4.5b illustrates Definition 1.4.5.

1
» Example 5 Prove that limO — =+
x—0 X

Solution. Applying Definition 1.4.4 with f(x) = 1/x? and a = 0, we must show that
given a number M > 0, we can find a number § > 0 such that

1
—>M if 0<|x—0]<3$ (14)
X
or, on taking reciprocals and simplifying,
1
><— if 0<|x|<3$ (15)
M

But x> < 1/M if |x| < 1/+/M, so that § = 1/+/M satisfies (15). Since (14) is equivalent
to (15), the proof is complete. <«

VQUlCK CHECK EXERCISES 1.4  (See page 109 for answers.)

1. The definition of a two-sided limit states: lim, ., f(x) = L 4. The definition of limit at 4o states: lim,_, . f(x) =L

if given any number _____ there is a number
such that | f(x) — L| < € if

. Suppose that f(x) is a function such that for any given
€ > 0, the condition 0 < |x — 1| < €/2 guarantees that
| f(x) — 5| < €. What limit results from this property?

. Suppose that € is any positive number. Find the largest value
of § such that [5x — 10| < €if 0 < |x — 2| <.

EXERCISE SET 1.4 I Graphing Utility

if given any number there is a positive number
such that | f(x) — L| < € if

. Find the smallest positive number N such that for each

x > N, the value of f(x) = 1/./x is within 0.01 of 0.

1. (a) Find the largest open interval, centered at the origin on

the x-axis, such that for each x in the interval the value
of the function f(x) = x + 2 is within 0.1 unit of the
number f(0) = 2.

(b) Find the largest open interval, centered at x = 3, such
that for each x in the interval the value of the func-
tion f(x) = 4x — 5 is within 0.01 unit of the number
f(3)=1.

(c) Find the largest open interval, centered at x = 4, such
that for each x in the interval the value of the func-
tion f(x) = x? is within 0.001 unit of the number

f(4) = 16.

. In each part, find the largest open interval, centered at
x =0, such that for each x in the interval the value of
f(x) = 2x + 3 is within € units of the number f(0) = 3.
(a) e =0.1 (b) € =0.01

(c) € =0.0012

. (a) Find the values of xy and x; in the accompanying figure.

(b) Find a positive number § such that |/x — 2| < 0.05 if
0<|x—4| <.

24005 ———————————— — —
2 77777777777
2-005f—————=

Not drawn to scale
A Figure Ex-3

. (a) Find the values of xy and x; in the accompanying figure

on the next page.
(b) Find a positive number & such that |(1/x) — 1] < 0.1if
0<lx—1] <.
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1-01

Not drawn to scale

< Figure Ex-4

[ 5. Generate the graph of f(x) = x> —4x 4+ 5 with a graph-
ing utility, and use the graph to find a number & such
that | f(x) — 2] < 0.05if O < |x — 1| < 8. [Hint: Show
that the inequality | f(x) — 2| < 0.05 can be rewritten as
1.95 < x3 —4x + 5 < 2.05, and estimate the values of x
for which x> —4x +5 =1.95 and x> — 4x + 5 = 2.05.]
[ 6. Use the method of Exercise 5 to find a number 8 such that
[V5x +1—-4| <05if0 < |x — 3| < 4.

7. Let f(x) =x + J/xwith L = lim, _,; f(x)andlete = 0.2.
Use a graphing utility and its trace feature to find a positive
number § such that | f(x) — L] < €if0 < |x — 1] < 4.

[ 8. Let f(x) = (sin2x)/x and use a graphing utility to conjec-
ture the value of L = lim, ¢ f(x). Then let ¢ = 0.1 and
use the graphing utility and its trace feature to find a positive
number § such that | f(x) — L] < €if 0 < |x| < 8.

9-16 A positive number € and the limit L of a function f at
a are given. Find a number § such that | f(x) — L| < € if
0<|x—al <.
9. lim2x =8; e =0.1 10. lim (5x —2) = 13; € = 0.01
x—4 x—3

2

11. lim =
x—=>3 X —

i 4x2 — 1
lim
x——-1/2 2x + 1
13. 1im2x3 =8; € =0.001
xX—

=6; ¢ =0.05
3

12. =-2; € =0.05

14. lim4ﬁ =2; € =0.001
X —

1 1
15. lim — = —; € =0.05 16. lim |[x|] =0; € = 0.05
x—=5x 5 x—0

17-26 Use Definition 1.4.1 to prove that the limit is correct.

17. lirr123=3 18. 1im4(x+2)=6

19. lim 3x =15 20. lim (7x +5)=-2
x—5 x——1

2x? ’-9
20 tim Y 2. lim =6
x—=0 X x—>-3 x+3
. _ _fx+2, x#1
23. xh_)ml f(x) =3, where f(x) = 10, =1
. _ )9 —-2x, x#2
24. xh_)mz f(x) =5, where f(x) = 49, RN
25. limo |x] =0
S 9—-2x, x<2
26. xh_)mzf(x) =5, where f(x) = 1. x>2
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FOCUS ON CONCEPTS

27. Give rigorous definitions of lim,_, ,+ f(x) = L and
lim, . f(x) = L.

28. Consider the statement that lim, _, , | f(x) — L| = 0.
(a) Using Definition 1.4.1, write down precisely what
this limit statement means.
(b) Explain why your answer to part (a) shows that

lim |f(x) —L| =0 ifandonlyif lim f(x) =L

29. (a) Show that
|(3x% + 2x — 20) — 300| = |3x + 32| - |x — 10

(b) Find an upper bound for |3x + 32| if x satisfies
[x —10] < 1.
(c) Fill in the blanks to complete a proof that

lin}o[fixz + 2x —20] = 300

Suppose thate > 0. Set§ = min(1l, ) and
assume that 0 < |x — 10| < §. Then

|(3x% 4 2x —20) — 300| = |3x + 32| - |x — 10|

< - |x —10]
< [
=€
30. (a) Show that
o
3x +1 3x+1

(b) Is [12/(3x + 1)| bounded if |x — 2| < 4? If not,
explain; if so, give a bound.

(c) Is |12/(3x + 1)| bounded if |x —2| < 1? If not,
explain; if so, give a bound.

(d) Fill in the blanks to complete a proof that

. 28
lim =4
x=>2|3x +1

Suppose thate > 0. Set § = min(l, ) and
assume that 0 < |x — 2| < §. Then
28
— 4| = clx = 2]
3x+1 3x+1
< - x =2
<
=€

31-36 Use Definition 1.4.1 to prove that the stated limit is
correct. In each case, to show that lim,_,, f(x) = L, factor
| f(x) — L] in the form

| f(x) — L| = |“something”| - |x — a

and then bound the size of |“something”| by putting restrictions
on the size of §.
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31. liml 2x> =2 [Hint: Assume § < 1.]
xX—

32. 1im3(x2 +x) =12 [Hint: Assume § < 1.]
x—

1 2x +3

33. lim =1 34, lim =2 _g
x—-2x+1 x—1/2 X

3s. lim Jx=2 36. lim =38

37. Let

0, if x is rational

f(x):{

x, if x is irrational

Use Definition 1.4.1 to prove that lim, _, o f(x) = 0.
38. Let

0, if x is rational

f(x):{

1, if x is irrational

Use Definition 1.4.1 to prove that lim, ¢ f(x) does not
exist. [Hint: Assume lim, _ o f(x) = L and apply Defi-
nition 1.4.1 with € = 1 to conclude that |1 — L| < § and
IL|=10—-L| < % Then show 1 < |1 — L| 4+ |L| and de-
rive a contradiction. ]

39. (a) Find the smallest positive number N such that for each
x in the interval (N, +o), the value of the function
f(x) = 1/x? is within 0.1 unit of L = 0.

(b) Find the smallest positive number N such that for each x
in the interval (N, +o), the value of f(x) = x/(x + 1)
is within 0.01 unit of L = 1.

(c) Find the largest negative number N such that for each
x in the interval (—o, N), the value of the function
f(x) = 1/x? is within 0.001 unit of L = 0.

(d) Find the largest negative number N such that for each
x in the interval (—o, N), the value of the function
f(x) = x/(x + 1) is within 0.01 unit of L = 1.

40. In each part, find the smallest positive value of N such that
foreach x in the interval (N, 4o0), the function f(x) = 1/x3
is within € units of the number L = 0.

(a) e =0.1 (b) € =0.01 (c¢) ¢ =0.001

41. (a) Find the values of x; and x; in the accompanying figure.
(b) Find a positive number N such that

2

-1

X
<€

1+ x2

forx > N.
(c) Find a negative number N such that

X
1+ x2

—1‘<e

forx < N.

Not drawn to scale < Figure Ex-41

42. (a) Find the values of x; and x, in the accompanying figure.
(b) Find a positive number N such that

1
I

<€

1
Ix

forx > N.
(c) Find a negative number N such that

< €

< Figure Ex-42

43-46 A positive number € and the limit L of a function f at 4+
are given. Find a positive number N such that | f(x) — L| < €
ifx > N.

1
43. lim - = 0; € =0.01

X—> 40 X

1
44. lim =0; € =0.005
x—>+o x +2
45. lim —— = 1; € = 0.001
x—)+:x:x—"—1
. 4x — 1
46. lim =2; €e=0.1
x>+ 2x +5

47-50 A positive number € and the limit L of a function f at —o
are given. Find a negative number N such that | f(x) — L| < €
ifx < N.

1
47. lim =0; ¢ =0.005
x—>-—wx 4+2
1
48. lim - = 0; ¢ =0.01
x—>—® X
4x — 1
49, 1i =2; ¢=0.1
1—1>H}ac 2x +5 €



50.

. X
lim 1 =1; € =0.001

x—)—ocx.l,-

51-56 Use Definition 1.4.2 or 1.4.3 to prove that the stated limit

is correct.
1
51. lim — =0 52. lim =
X — 4o x x—>+0o x + 2
4x — 1
53, lim — =2 54. lim =
x—>-—»2x +5 x—>—o x 4+
2
55 tim =" ) 56. lim 2" =0
x—>+4» /x — 1 X —> —»
57. (a) Find the largest open interval, centered at the origin on

58.

the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = 1/x? are greater
than 100.

Find the largest open interval, centered at x = 1, such
that for each x in the interval, other than the center,
the values of the function f(x) = 1/|x — 1] are greater
than 1000.

Find the largest open interval, centered at x = 3, such
that for each x in the interval, other than the center,
the values of the function f(x) = —1/(x — 3)? are less
than —1000.

Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = —1/x* are less
than —10,000.

In each part, find the largest open interval centered atx = 1,
such that for each x in the interval, other than the center, the
value of f(x) = 1/(x — 1)? is greater than M.

(A M =10 (b) M =1000 (c) M = 100,000

(b)

(©

(d

59-64 Use Definition 1.4.4 or 1.4.5 to prove that the stated limit

is correct.

59. lim —— = 60. lim — —  — —
BT <05 (x — 3)2

1 1

61. lim — = 4o 62. lim = 4o

x—0 |x| x—>1|x — 1]
. 1 !

63. lim - )= 64. lim — =+

x—0 X x—=0x

65-70 Use the definitions in Exercise 27 to prove that the stated
one-sided limit is correct.

65.

67.

69.

Iim (x+1)=3
x—2*
lim v/x—4=0
x—4+

66. linll Bx+2)=5
x—1-
68. lim ~/—x =0

x—0~

X, x>2

xll)rr21+ f(x) =2, where f(x) = {3x, <2

l/ QUICK CHECK ANSWERS 1.4

70

71

1.4 Limits (Discussed More Rigorously) 109
. x, x>2
. xlin%f f(x) =6, where f(x) = {3% r<2

—~74 Write out the definition for the corresponding limit in

the marginal note on page 105, and use your definition to prove
that the stated limit is correct.

71

72.
73.

74.
75.

76.

77.

@l = O
1
(a) lim — =+ (b) lim — = —o
x—0t X x—>0"

(a) linl x+1) =4 (b) lin} x+1)=—x

(a) 1in+1 (x2=3)=+4o (b) lim (x3+5)= -

According to Ohm’s law, when a voltage of V volts is ap-
plied across a resistor with a resistance of R ohms, a current
of I = V/R amperes flows through the resistor.
(a) How much current flows if a voltage of 3.0 volts is ap-
plied across a resistance of 7.5 ohms?
(b) If the resistance varies by 0.1 ohm, and the voltage
remains constant at 3.0 volts, what is the resulting range
of values for the current?
If temperature variations cause the resistance to vary
by %6 from its value of 7.5 ohms, and the voltage re-
mains constant at 3.0 volts, what is the resulting range
of values for the current?
If the current is not allowed to vary by more than
€ = £0.001 ampere at a voltage of 3.0 volts, what vari-
ation of 6 from the value of 7.5 ohms is allowable?
Certain alloys become superconductors as their tem-
perature approaches absolute zero (—273°C), meaning
that their resistance approaches zero. If the voltage
remains constant, what happens to the current in a su-
perconductor as R — 0*?

(©)

()

(e)

Writing Compare informal Definition 1.1.1 with Definition

1.4.1.

(a) What portions of Definition 1.4.1 correspond to the ex-
pression “values of f(x) can be made as close as we
like to L” in Definition 1.1.1? Explain.

(b) What portions of Definition 1.4.1 correspond to the ex-
pression “taking values of x sufficiently close to a (but
not equal to a)” in Definition 1.1.1? Explain.

Writing Compare informal Definition 1.3.1 with Definition

1.4.2.

(a) What portions of Definition 1.4.2 correspond to the ex-
pression “values of f(x) eventually get as close as we
like to a number L” in Definition 1.3.1? Explain.

(b) What portions of Definition 1.4.2 correspond to the ex-
pression “as x increases without bound” in Definition
1.3.1? Explain.

1. e >0;6>0;0<|x—al <$§

2. limy oy f(x) =5

3.8=¢/5

4. e >0;N;x >N 5. N =10,000
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m CONTINUITY

AT

4t

A thrown baseball cannot vanish at some point and reappear someplace else to continue
its motion. Thus, we perceive the path of the ball as an unbroken curve. In this section, we
translate “unbroken curve” into a precise mathematical formulation called continuity,
and develop some fundamental properties of continuous curves.

[ o Il DEFINITION OF CONTINUITY

= |
Joseph Helfenberger/i Stockphoto

A baseball moves along a "continu-
ous" trajectory after leaving the
pitcher's hand.

Intuitively, the graph of a function can be described as a “continuous curve” if it has no
breaks or holes. To make this idea more precise we need to understand what properties of
a function can cause breaks or holes. Referring to Figure 1.5.1, we see that the graph of a
function has a break or hole if any of the following conditions occur:

e The function f is undefined at ¢ (Figure 1.5.1a).
e The limit of f(x) does not exist as x approaches ¢ (Figures 1.5.1b, 1.5.1c).
e The value of the function and the value of the limit at ¢ are different (Figure 1.5.1d).

y y AY AY
y=1(x) }
y=10) /////" | y=109

T f(x) .
T X y = f(x T
i 1 i i

/ ! /] } x 1 X / ! X
c c c c
() (b) (c) (d)

A Figure 1.5.1

The third condition in Definition 1.5.1
actually implies the first two, since it is
tacitly understood in the statement

lim f() = f(c)

that the limit exists and the function is
defined at c¢. Thus, when we want to
establish continuity at ¢ our usual pro-
cedure will be to verify the third condi-
tion only.

This suggests the following definition.

1.5.1 DEFINITION A function f is said to be continuous at x = ¢ provided the
following conditions are satisfied:

1. f(c) is defined.

2. lim f(x) exists.
X—>C

3. lim f(x) = f(o).

If one or more of the conditions of this definition fails to hold, then we will say that f has
a discontinuity at x = c. Each function drawn in Figure 1.5.1 illustrates a discontinuity
at x = c¢. In Figure 1.5.1a, the function is not defined at ¢, violating the first condition
of Definition 1.5.1. In Figure 1.5.1b, the one-sided limits of f(x) as x approaches ¢ both
exist but are not equal. Thus, lim, _, . f(x) does not exist, and this violates the second
condition of Definition 1.5.1. We will say that a function like that in Figure 1.5.1b has a
Jump discontinuity at c. In Figure 1.5.1c, the one-sided limits of f(x) as x approaches
c are infinite. Thus, lim, _, . f(x) does not exist, and this violates the second condition
of Definition 1.5.1. We will say that a function like that in Figure 1.5.1¢ has an infinite
discontinuity at c. In Figure 1.5.1d, the function is defined at ¢ and lim, _, . f(x) exists,
but these two values are not equal, violating the third condition of Definition 1.5.1. We will
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say that a function like that in Figure 1.5.1d has a removable discontinuity at c. Exercises
33 and 34 help to explain why discontinuities of this type are given this name.

» Example 1 Determine whether the following functions are continuous at x = 2.

2-4 x2—4
2_4 x_’ 2 -, 2
f(x)zxfz’ go=1x=2" 7 W ={x-2 7
* 3, x =2, 4, x=2

Solution. In each case we must determine whether the limit of the function as x — 2 is
the same as the value of the function at x = 2. In all three cases the functions are identical,
except at x = 2, and hence all three have the same limit at x = 2, namely,

2

xh_)rnzf(x) —xll_>n12g(x) —xh_)mzh(x) —Xll_)m2 P —)}l_r)nz(x—I—Z) =4

The function f is undefined at x = 2, and hence is not continuous at x = 2 (Figure 1.5.2a).
The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as
the limit as x approaches 2; hence, g is also not continuous at x = 2 (Figure 1.5.2b). The
value of the function / at x = 2 is h(2) = 4, which is the same as the limit as x approaches
2; hence, & is continuous at x = 2 (Figure 1.5.2¢). (Note that the function & could have
been written more simply as 2(x) = x + 2, but we wrote it in piecewise form to emphasize
its relationship to f and g.) <«

y=9(x)

N

(b)

A Figure 1.5.2

CONTINUITY IN APPLICATIONS

In applications, discontinuities often signal the occurrence of important physical events.
For example, Figure 1.5.3a is a graph of voltage versus time for an underground cable that
is accidentally cut by a work crew at time ¢ = f, (the voltage drops to zero when the line is
cut). Figure 1.5.3b shows the graph of inventory versus time for a company that restocks
its warehouse to y; units when the inventory falls to yy units. The discontinuities occur at
those times when restocking occurs.

Chris Hondros/Getty Images

A poor connection in a transmission
cable can cause a discontinuity in the
electrical signal it carries.

V (Voltage) y (Amount of inventory)
W\J\/\f-
[
|
|
|
! t
It
Line—" o
cut Restocking occurs
(@ (b)

A Figure 1.5.3
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y
y =1

. |
|

{ |

| | X

a b

A Figure 1.5.4

Modify Definition 1.5.2 appropriately
so that it applies to intervals of the form
[a, +), (=, b], (a, b], and [a, b).

=N
T T

3 -2 1 1 2 3

f(x) =V9 - x?

A Figure 1.5.5

Il CONTINUITY ON AN INTERVAL

If a function f is continuous at each number in an open interval (a, b), then we say that f is
continuous on (a, b). This definition applies to infinite open intervals of the form (a, 4),
(—o, b), and (—o, 4+c0). In the case where f is continuous on (—ce, +o0), we will say that
f is continuous everywhere.

Because Definition 1.5.1 involves a two-sided limit, that definition does not generally
apply at the endpoints of a closed interval [a, b] or at the endpoint of an interval of the
form [a, b), (a, b], (—%, b], or [a, +). To remedy this problem, we will agree that a
function is continuous at an endpoint of an interval if its value at the endpoint is equal
to the appropriate one-sided limit at that endpoint. For example, the function graphed in
Figure 1.5.4 is continuous at the right endpoint of the interval [a, b] because

lim /() = f(b)
but it is not continuous at the left endpoint because
[Aim f(x) # f(a)
In general, we will say a function f is continuous from the left at c if
Jim f(x) = f(e)
and is continuous from the right at c if
xlijcg fx) = f(o)

Using this terminology we define continuity on a closed interval as follows.

1.5.2 DEFINITION A function f is said to be continuous on a closed interval [a, b]
if the following conditions are satisfied:

1. f is continuous on (a, b).
2. f is continuous from the right at a.

3. f is continuous from the left at b.

» Example 2 What can you say about the continuity of the function f(x) = v/9 — x2?

Solution. Because the natural domain of this function is the closed interval [—3, 3], we
will need to investigate the continuity of f on the open interval (—3,3) and at the two
endpoints. If ¢ is any point in the interval (—3, 3), then it follows from Theorem 1.2.2(e)

that
lim f(x) = lim v9 —x2 = \/lim) 9 —x2) =v9—¢2 = f(o)

which proves f is continuous at each point in the interval (—3, 3). The function f is also
continuous at the endpoints since

lim f(x) = Tim. V9 —x2= lim (9 —x%) =0=f(3)

i — 1 — X2 = i — ) =0= f(—
im )= lim V9-22= [lim ©-2%)=0=f(-3)

Thus, f is continuous on the closed interval [—3, 3] (Figure 1.5.5). «
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Il SOME PROPERTIES OF CONTINUOUS FUNCTIONS
The following theorem, which is a consequence of Theorem 1.2.2, will enable us to reach
conclusions about the continuity of functions that are obtained by adding, subtracting,
multiplying, and dividing continuous functions.

1.5.3 THEOREM [fthe functions f and g are continuous at c, then
(@) f + g is continuous at c.

(b) f — g is continuous at c.

(c) fgis continuous at c.

(d) f/gis continuous at c if g(c) # 0 and has a discontinuity at ¢ if g(c) = 0.

We will prove part (d ). The remaining proofs are similar and will be left to the exercises.

PROOF  First, consider the case where g(c) = 0. In this case f(c)/g(c) is undefined, so
the function f/g has a discontinuity at c.
Next, consider the case where g(c) # 0. To prove that f/g is continuous at ¢, we must
show that
lim L&) _ f© )
r—cg(x)  glo)

Since f and g are continuous at c,
lim f(x) = f(¢) and lim g(x) = g(c)
Thus, by Theorem 1.2.2(d)

fay M) e

eg)  limg() - gle)

which proves (1). m

Il CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS
The general procedure for showing that a function is continuous everywhere is to show that
it is continuous at an arbitrary point. For example, we know from Theorem 1.2.3 that if
p(x) is a polynomial and a is any real number, then

lim p(x) = p(@)

This shows that polynomials are continuous everywhere. Moreover, since rational functions
are ratios of polynomials, it follows from part (d) of Theorem 1.5.3 that rational functions
are continuous at points other than the zeros of the denominator, and at these zeros they
have discontinuities. Thus, we have the following result.

1.54 THEOREM
(@) A polynomial is continuous everywhere.

(b) A rational function is continuous at every point where the denominator is nonzero,
and has discontinuities at the points where the denominator is zero.
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TECHNOLOGY MASTERY

» Example 3 For what values of x is there a discontinuity in the graph of

If you use a graphing utility to generate
the graph of the equation in Example 3,
there is a good chance you will see
the discontinuity at x = 2 but not at
x =3. Try it, and explain what you
think is happening.

<

6F | %
I
2+ |
m\\7\}\\\\\\X
-8 -6 -4 -2} 2 4 6 8
|
|
|
|
|
|
2
X“—9
Yy=———
X“—5x+6
A Figure 1.5.6

x2—9
)’=2—?
x2—=5x+6

Solution. The function being graphed is a rational function, and hence is continuous at
every number where the denominator is nonzero. Solving the equation
x> =5x+6=0

yields discontinuities at x = 2 and at x = 3 (Figure 1.5.6). «

» Example 4 Show that |x| is continuous everywhere (Figure 0.1.9).

Solution. We can write |x| as

x if x>0
|x| = 0 if x=0
—x if x <O

so |x| is the same as the polynomial x on the interval (0, +o) and is the same as the

polynomial —x on the interval (—oo, 0). But polynomials are continuous everywhere, so

x = 0 is the only possible discontinuity for |x|. Since |0] = 0, to prove the continuity at

x = 0 we must show that lim [x| =0 ?)
x—0

Because the piecewise formula for |x| changes at 0, it will be helpful to consider the one-
sided limits at O rather than the two-sided limit. We obtain

lim |x|]= lim x=0 and Ilim |x|= lim (—x) =0
x—0F x—0* x—>0- x—>0-

Thus, (2) holds and |x| is continuous at x = 0. <«

Il CONTINUITY OF COMPOSITIONS
The following theorem, whose proof is given in Appendix J, will be useful for calculating
limits of compositions of functions.

In words, Theorem 1.5.5 states that a
limit symbol can be moved through a
function sign provided the limit of the
expression inside the function sign ex-
ists and the function is continuous at
this limit.

1.5.5 THEOREM [flim,_, . g(x) = L and if the function f is continuous at L, then
lim, . f(g(x)) = f(L). That is,

lim f(g(0) = 7 lim ¢())

This equality remains valid if lim, _, . is replaced everywhere by one of lim, _ .+,
limy o, limy 4o, or lim, —, ..

In the special case of this theorem where f(x) = |x|, the fact that |x| is continuous
everywhere allows us to write

lim |g(0)] = [lim g(x)| 3)

provided lim, _, . g(x) exists. Thus, for example,

1im3|5—x2| = )lim3(5—x2)‘ =|-4/=4
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The following theorem is concerned with the continuity of compositions of functions;
the first part deals with continuity at a specific number and the second with continuity
everywhere.

1.5.6 THEOREM

(@) Ifthe function g is continuous at ¢, and the function f is continuous at g(c), then
the composition f o g is continuous at c.

(b) If'the function g is continuous everywhere and the function f is continuous every-
where, then the composition f o g is continuous everywhere.

PROOF We will prove part (a) only; the proof of part (b) can be obtained by applying part
(a) at an arbitrary number c¢. To prove that f o g is continuous at ¢, we must show that the
value of fog and the value of its limit are the same at x = ¢. But this is so, since we can

write
lim (fo)(x) = lim f(g(x)) = / ( im g(x)) = f(g(e)) = (fog)(c) m
Can the absolute value of a function r=e r=e r=e
that is not continuous everywhere be - -
continuous everywhere? Justify your Theorem 1.5.5 g is continuous at c.

answer.

We know from Example 4 that the function |x| is continuous everywhere. Thus, if g(x)
y=|4-x7 is continuous at ¢, then by part (a) of Theorem 1.5.6, the function |g(x)| must also be
continuous at c¢; and, more generally, if g(x) is continuous everywhere, then so is |g(x)].
Stated informally:

y

The absolute value of a continuous function is continuous.

| | | | | |
-4-3-2-1 12 3 4 For example, the polynomial g(x) = 4 — x? is continuous everywhere, so we can conclude
A Figure 1.5.7 that the function |4 — x?| is also continuous everywhere (Figure 1.5.7).

B THE INTERMEDIATE-VALUE THEOREM
y Figure 1.5.8 shows the graph of a function that is continuous on the closed interval [a, b].
fo) |———————————— The figure suggests that if we draw any horizontal line y = k, where k is between f(a)
and f(b), then that line will cross the curve y = f(x) at least once over the interval [a, b].
Stated in numerical terms, if f is continuous on [a, b], then the function f must take on
every value k between f(a) and f(b) at least once as x varies from a to b. For example,
the polynomial p(x) = x> — x 4 3 has a value of 3 at x = 1 and a value of 33 at x = 2.
Thus, it follows from the continuity of p that the equation x> — x + 3 = k has at least one
solution in the interval [1, 2] for every value of k between 3 and 33. This idea is stated
more precisely in the following theorem.

f(a) -

A Figure 1.5.8

1.5.7 THEOREM (Intermediate-Value Theorem) If f is continuous on a closed interval
[a, b] and k is any number between f(a) and f(b), inclusive, then there is at least one
number x in the interval [a, b] such that f(x) = k.

Although this theorem is intuitively obvious, its proof depends on a mathematically precise
development of the real number system, which is beyond the scope of this text.
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f(a)>0}—
| b 3

f(b) < Of————————=>

A Figure 1.5.9

y=x3-x-1

A Figure 1.5.10

Il APPROXIMATING ROOTS USING THE INTERMEDIATE-VALUE THEOREM

A variety of problems can be reduced to solving an equation f(x) = O for its roots. Some-
times it is possible to solve for the roots exactly using algebra, but often this is not possible
and one must settle for decimal approximations of the roots. One procedure for approxi-
mating roots is based on the following consequence of the Intermediate-Value Theorem.

1.5.8 THEOREM [f f is continuous on [a, b], and if f(a) and f(b) are nonzero and
have opposite signs, then there is at least one solution of the equation f(x) = 0 in the
interval (a, b).

This result, which is illustrated in Figure 1.5.9, can be proved as follows.

PROOF Since f(a) and f(b) have opposite signs, 0 is between f(a) and f(b). Thus, by
the Intermediate-Value Theorem there is at least one number x in the interval [a, b] such
that f(x) = 0. However, f(a) and f(b) are nonzero, so x must lie in the interval (a, b),
which completes the proof. ®

Before we illustrate how this theorem can be used to approximate roots, it will be helpful
to discuss some standard terminology for describing errors in approximations. If x is an
approximation to a quantity xo, then we call

€ =|x — x|

the absolute error or (less precisely) the error in the approximation. The terminology in
Table 1.5.1 is used to describe the size of such errors.

Table 1.5.1
ERROR DESCRIPTION
[Xx—=X%p| < 0.1 X approximates xq with an error of at most 0.1.
[X —Xo| <0.01 X approximates xo with an error of at most 0.01.

[X—Xo| £0.001  x approximates xo with an error of at most 0.001.
[x —Xo| <0.0001  x approximates xo with an error of at most 0.0001.

[x—Xo| < 0.5 X approximates Xq to the nearest integer.

[X —Xo| < 0.05 X approximates X to 1 decimal place (i.e., to the nearest tenth).

[X —Xo| £0.005  x approximates xg to 2 decimal places (i.e., to the nearest hundredth).
|X —Xo| < 0.0005  x approximates xg to 3 decimal places (i.e., to the nearest thousandth).

» Example 5 The equation
¥_x—-1=0

cannot be solved algebraically very easily because the left side has no simple factors.
However, if we graph p(x) = x*> — x — 1 with a graphing utility (Figure 1.5.10), then we
are led to conjecture that there is one real root and that this root lies inside the interval
[1,2]. The existence of a root in this interval is also confirmed by Theorem 1.5.8, since
p(1) = —1and p(2) = 5 have opposite signs. Approximate this root to two decimal-place
accuracy.
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Solution. Our objective is to approximate the unknown root xy with an error of at most
0.005. It follows that if we can find an interval of length 0.01 that contains the root, then the
midpoint of that interval will approximate the root with an error of at most % (0.01) = 0.005,
which will achieve the desired accuracy.

We know that the root xq lies in the interval [1, 2]. However, this interval has length
1, which is too large. We can pinpoint the location of the root more precisely by dividing
the interval [1, 2] into 10 equal parts and evaluating p at the points of subdivision using
a calculating utility (Table 1.5.2). In this table p(1.3) and p(1.4) have opposite signs, so
we know that the root lies in the interval [1.3, 1.4]. This interval has length 0.1, which is
still too large, so we repeat the process by dividing the interval [1.3, 1.4] into 10 parts and
evaluating p at the points of subdivision; this yields Table 1.5.3, which tells us that the root
is inside the interval [1.32, 1.33] (Figure 1.5.11). Since this interval has length 0.01, its
midpoint 1.325 will approximate the root with an error of at most 0.005. Thus, xo ~ 1.325
to two decimal-place accuracy. <«

Table 1.5.2

X 1 11 12 13 14 15 16 17 18 1.9 2
p(x) | -1 |-0.77|-047|-010| 034 | 088 | 1.50 | 221 | 3.03 | 3.96 5

Table 1.5.3

|
_/\/1.322 4 1.326 1.328 1.330

-0.01 -

-0.02

A Figure 1.5.11

REMARK

TECHNOLOGY MASTERY

Use a graphing or calculating utility to
show that the root xy in Example 5
can be approximated as xp ~ 1.3245
to three decimal-place accuracy.

X 13| 131 | 132| 133| 134 | 135 | 1.36 | 1.37 | 1.38 | 1.39 | 14
p(x) |—0.103|-0.062|—-0.020| 0.023 | 0.066 | 0.110 | 0.155 | 0.201 | 0.248 | 0.296 | 0.344

To say that x approximates x, to n decimal places does not mean that the first n decimal places of x
and x, will be the same when the numbers are rounded to n decimal places. For example, x = 1.084
approximates x, = 1.087 to two decimal places because |x — xy| = 0.003 (< 0.005). However, if we
round these values to two decimal places, then we obtain x ~ 1.08 and x, ~ 1.09. Thus, if you
approximate a number to n decimal places, then you should display that approximation to at least
n + 1 decimal places to preserve the accuracy.

“QUlCK CHECK EXERCISES 1.5  (See page 120 for answers.)

1. What three conditions are satisfied if f is continuous at 4. For what values of x, if any, is the function
x =c? _ x2—16
2. Suppose that f and g are continuous functions such that fo = x2—5x+4
f(2) = Tand lim [f(x) +4g(x)] = 13. Find discontinuous?
(@ g(2) 5. Suppose that a function f is continuous everywhere and

(b) lim g(x).

that f(=2) =3, f(=1) = -1, f(0) =—4, f(1) =1, and
f(2) = 5. Does the Intermediate-Value Theorem guarantee

3. Suppose that f and g are continuous functions such that that f has a root on the following intervals?
lim g(x) =5and f(3) = —2. Find lim [f(x)/g(x)]. @ [-2,-1] () [-1,0] (o) [-1,1] (d) [0,2]
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EXERCISE SET 1.5 ~ Graphing Utility

1-4 Let f be the function whose graph is shown. On which of
the following intervals, if any, is f continuous?

(@ [1,3] () (1,3) (o [1,2]

(@ (1,2)  (e) [2,3] () (2,3)

For each interval on which f is not continuous, indicate which
conditions for the continuity of f do not hold.

1. y 2. y
>r—9 /.
L
*—0
1 1 1 X 1 1 1 X
1 2 3 1 2 3
3 y 4 y
| |
| |
| |
| |
| |
| |
| |
| |
| I | X | I X
1 2 3 1 2 3
5. Consider the functions
)1, x#4 _ J4x —10, x #4
f(x)—{_L T7, and g(x)—{—a T
In each part, is the given function continuous at x = 47
(@) f(x) (b) g(x) (©) —g(x)  (d) [f(x)]

(&) f()glx) (f) g(f(x)) (8) g(x) —6f(x)
6. Consider the functions
P e
In each part, is the given function continuous at x = 0?
(@ fx) () g(x) © f(=x) (@ [gx)]
(e f(x)glx) (F) g(f(x) (&) fx)+gx)

FOCUS ON CONCEPTS

7. Ineach part sketch the graph of a function f that satisfies
the stated conditions.

(a) f is continuous everywhere except at x = 3, at
which point it is continuous from the right.

(b) f has a two-sided limit at x = 3, but it is not con-
tinuous at x = 3.

(c) fisnotcontinuousatx = 3, butifits valueatx = 3
is changed from f(3) = 1 to f(3) = 0, it becomes
continuous at x = 3.

(d) f is continuous on the interval [0, 3) and is defined
on the closed interval [0, 3]; but f is not continuous
on the interval [0, 3].

8. The accompanying figure models the concentration C
of medication in the bloodstream of a patient over a
48-hour period of time. Discuss the significance of the
discontinuities in the graph.

C (mg/L)

NN

.t
12 24 36 48

N

< Figure Ex-8

9. A student parking lot at a university charges $2.00 for
the first half hour (or any part) and $1.00 for each sub-
sequent half hour (or any part) up to a daily maximum
of $10.00.

(a) Sketch a graph of cost as a function of the time
parked.

(b) Discuss the significance of the discontinuities in the
graph to a student who parks there.

10. In each part determine whether the function is continu-
ous or not, and explain your reasoning.

(a) The Earth’s population as a function of time.

(b) Your exact height as a function of time.

(c) The cost of a taxi ride in your city as a function of
the distance traveled.

(d) The volume of a melting ice cube as a function of
time.

11-22 Find values of x, if any, at which f is not continuous.

1. f(x)=5x"—3x+7 12 f(x)=Vx -8

x+2 x+2
13. = — 14. =
3. f(x) 214 fx) 4
X 2x + 1
15. = —F 16. = -
f®) 2x% 4+ x f&) 4x2 +4x+5
17 =2+ 2L s =24 2
) x_x x2—1 ) x_x x+4
x24+6x+9 8
19. L TXTT ), —la—
fx) X+ 3 Sx) ‘ .
2x+3, x<4
21. f(x) = 16
&) 7T+ —, x>4
X
3
s 1
» fo=li-1 7
3, x=1

23-28 True-False Determine whether the statement is true or
false. Explain your answer.

23. If f(x) is continuous at x = c, then so is | f(x)|.
24. If | f(x)| is continuous at x = ¢, then so is f(x).
25. If f and g are discontinuous at x = ¢, then sois f + g.

26. If f and g are discontinuous at x = ¢, then so is fg.



27. If \/ f(x) is continuous at x = ¢, then so is f(x).
28. If f(x) is continuous at x = ¢, then so is 4/ f(x).

29-30 Find a value of the constant k, if possible, that will make
the function continuous everywhere.

Tx —2, <1

2. @ fo={" " T2,
kx2, x <2

®) FO = o +k, x>2
9—x?, x>-3
30. @ fO =108 o3

2
® fw=1, 5 =20

31. Find values of the constants k and m, if possible, that will
make the function f continuous everywhere.

x% 45, x>2
f)=1mx+D+k —-1<x<2
2x3 +x +7, x<-—1

32. On which of the following intervals is

fx) =

x—2
continuous?

(@ [2,4%) (b) (=, +%2) () (2,+) (d) [1,2)

33-36 A function f is said to have a removable discontinuity
atx = ciflim,_, . f(x) exists but f is not continuous at x = c,
either because f is not defined at ¢ or because the definition for
f(c) differs from the value of the limit. This terminology will
be needed in these exercises.

33. (a) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is undefined.
(b) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is defined.

34. (a) The terminology removable discontinuity is appropri-
ate because a removable discontinuity of a function f
at x = ¢ can be “removed” by redefining the value of
f appropriately at x = ¢. What value for f(c) removes
the discontinuity?

(b) Show that the following functions have removable dis-
continuities at x = 1, and sketch their graphs.

2 1, x>1

fx) = and g(x)=10, x=1
x —

1, x<1

(c) What values should be assigned to f(1) and g(1) to
remove the discontinuities?

35-36 Find the values of x (if any) at which f is not contin-
uous, and determine whether each such value is a removable
discontinuity.

_ _x?43x

35 @ f)="— b) f00) ===
© fory =22
T x| =2

1.5 Continuity 119

2 _4 _
2
© f(x)={2" o

[ 37. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = (x + 3)/(2x% + 5x — 3), and then use the
graph to make a conjecture about the number and loca-
tions of all discontinuities.

(b) Check your conjecture by factoring the denominator.

[~ 38. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = x/(x> — x 4+ 2), and then use the graph to
make a conjecture about the number and locations of
all discontinuities.

(b) Use the Intermediate-Value Theorem to approximate
the locations of all discontinuities to two decimal places.

39. Prove that f(x) = x3/5 is continuous everywhere, carefully
justifying each step.

40. Prove that f(x) = 1/+/x*+ 7x2 + 1 is continuous every-

where, carefully justifying each step.

41. Prove:
(a) part (a) of Theorem 1.5.3
(b) part (b) of Theorem 1.5.3
(c) part (c) of Theorem 1.5.3.

42. Prove part (b) of Theorem 1.5.4.

43. (a) Use Theorem 1.5.5 to prove that if f is continuous at
x =c¢, thenlim,_ ¢ f(c + h) = f(c).
(b) Prove that if lim;, o f(c + h) = f(c), then f is con-
tinuous at x = ¢. [Hint: What does this limit tell you
about the continuity of g(h) = f(c + h)?]
(c) Conclude from parts (a) and (b) that f is continuous at
x = cifand only if lim;, o f(c + h) = f(c).

44. Prove: If f and g are continuous on [a, b], and f(a) > g(a),
f(b) < g(b), then there is at least one solution of the equa-
tion f(x) = g(x) in (a, b). [Hint: Consider f(x) — g(x).]

FOCUS ON CONCEPTS

45. Give an example of a function f that is defined on a
closed interval, and whose values at the endpoints have
opposite signs, but for which the equation f(x) = 0 has
no solution in the interval.

46. Let f be the function whose graph is shown in Exercise
2. For each interval, determine (i) whether the hypoth-
esis of the Intermediate-Value Theorem is satisfied, and
(i1) whether the conclusion of the Intermediate-Value
Theorem is satisfied.

(@) [1,2] (d) [2,3]

() [1,3]

47. Show that the equation x* + x? — 2x = 1 has at least one
solution in the interval [—1, 1].
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48.

49.

50.

51.

52,

53.

Prove: If p(x) is a polynomial of odd degree, then the equa-
tion p(x) = 0 has at least one real solution.
The accompanying figure shows the graph of the equation

y = x* 4+ x — 1. Use the method of Example 5 to approxi-
mate the x-intercepts with an error of at most 0.05.

[-5,4] x[-3, 6]
xScl=1,yScl =1 < Figure Ex-49
The accompanying figure shows the graph of the equation
y=5—x—x* Use the method of Example 5 to ap-
proximate the roots of the equation 5 — x — x* = 0 to two
decimal-place accuracy.

[-5,4] x[-3, 6]
xScl=1,yScl =1 < Figure Ex-50
Use the fact that +/5 is a solution of x2 — 5 = 0 to approx-

imate +/3 with an error of at most 0.005.

A sprinter, who is timed with a stopwatch, runs a hundred
yarddashin 10 s. The stopwatchis reset to 0, and the sprinter
is timed jogging back to the starting block. Show that there
is at least one point on the track at which the reading on
the stopwatch during the sprint is the same as the reading
during the return jog. [Hint: Use the result in Exercise 44.]

Prove that there exist points on opposite sides of the equator
that are at the same temperature. [Hint: Consider the ac-
companying figure, which shows a view of the equator from
a point above the North Pole. Assume that the temperature
T (9) is a continuous function of the angle 8, and consider
the function f(0) =T + ) — T (6).]

l/ QUICK CHECK ANSWERS 1.5

54.

55.

56.

57.

58.

Temperature at this
point is T(6)

P Intersection of the
equator and the
prime meridian

A Figure Ex-53

Let R denote an elliptical region in the xy-plane, and de-
fine f(z) to be the area within R that is on, or to the left
of, the vertical line x = z. Prove that f is a continu-
ous function of z. [Hint: Assume the ellipse is between
the horizontal lines y =a and y = b, a < b. Argue that
Ifz) = f)l = (b —a)- |z — 22|

Let R denote an elliptical region in the plane. For any line
L, prove there is a line perpendicular to L that divides R in
half by area. [Hint: Introduce coordinates so that L is the
x-axis. Use the result in Exercise 54 and the Intermediate-
Value Theorem.]

Suppose that f is continuous on the interval [0, 1] and that

0 < f(x) <1 for all x in this interval.

(a) Sketchthe graphof y = x together with a possible graph
for f over the interval [0, 1].

(b) Use the Intermediate-Value Theorem to help prove that
there is at least one number c in the interval [0, 1] such
that f(c) = c.

Writing It is often assumed that changing physical quan-

tities such as the height of a falling object or the weight of

a melting snowball, are continuous functions of time. Use

specific examples to discuss the merits of this assumption.

Writing The Intermediate-Value Theorem (Theorem 1.5.7)
is an example of what is known as an “existence theorem.”
In your own words, describe how to recognize an existence
theorem, and discuss some of the ways in which an existence
theorem can be useful.

1. f(c) is defined; lim, _, . f(x) exists; lim, . f(x) = f(c)
5. (a) yes (b) no (c) yes (d) yes

2. (a) 3 (b) 3

3. =2/5 4. x=1,4
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CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL,
AND INVERSE FUNCTIONS

_— Q(cosc, sinc)
7 \

C P(cosx, sinx)

As X approaches ¢ the point
P approaches the point Q.

A Figure 1.6.1

Theorem 1.6.1 implies that the six basic
trigonometric functions are continuous
on their domains. In particular, sin x
and cos x are continuous everywhere.

In this section we will discuss the continuity properties of trigonometric functions,
exponential functions, and inverses of various continuous functions. We will also discuss
some important limits involving such functions.

CONTINUITY OF TRIGONOMETRIC FUNCTIONS

Recall from trigonometry that the graphs of sin x and cos x are drawn as continuous curves.
‘We will not formally prove that these functions are continuous, but we can motivate this fact
by letting c be a fixed angle in radian measure and x a variable angle in radian measure. If, as
illustrated in Figure 1.6.1, the angle x approaches the angle c, then the point P (cos x, sin x)
moves along the unit circle toward Q(cos ¢, sinc), and the coordinates of P approach the
corresponding coordinates of Q. This implies that

lim cosx = cosc (1)

X—>cC

lim sinx = sinc and

X—>cC

Thus, sin x and cos x are continuous at the arbitrary point c; that is, these functions are con-
tinuous everywhere.

The formulas in (1) can be used to find limits of the remaining trigonometric functions
by expressing them in terms of sin x and cos x; for example, if cos ¢ # 0, then

sin x sinc

lim tan x = lim =
x—c x—>c COS X

=tanc

cosc
Thus, we are led to the following theorem.

1.6.1 THEOREM [fc is any number in the natural domain of the stated trigonometric
function, then

lim sinx = sinc¢ lim cosx = cosc lim tanx = tanc

X—C X—C X—C
lim cscx =cscc lim secx = secc lim cotx = cotc
X—C X—C X—C

» Example 1 Find the limit

. (x2—l>
lim cos
x—1 x—1

Solution. Since the cosine function is continuous everywhere, it follows from Theorem
1.5.5 that

lim1 cos(g(x)) = cos <lim1 g(x))
provided lirn1 g(x) exists. Thus,

2
lim cos <x N ) = lim1 cos(x + 1) = cos (lim1 (x + 1)) =cos2 <«

x—1 X —

CONTINUITY OF INVERSE FUNCTIONS

Since the graphs of a one-to-one function f and its inverse f ! are reflections of one another
about the line y = x, it is clear geometrically that if the graph of f has no breaks or holes
in it, then neither does the graph of f~!. This, and the fact that the range of f is the domain
of f~!, suggests the following result, which we state without formal proof.
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To paraphrase Theorem 1.6.2, the in-
verse of a continuous function is con-
tinuous.

A Figure 1.6.2

1.6.2 THEOREM If f is a one-to-one function that is continuous at each point of its
domain, then = is continuous at each point of its domain; that is, f~" is continuous
at each point in the range of f.

» Example 2 Use Theorem 1.6.2 to prove that sin~! x is continuous on the interval
[—1,1].

Solution. Recall that sin~! x is the inverse of the restricted sine function whose domain
is the interval [—m/2, /2] and whose range is the interval [—1, 1] (Definition 0.4.6 and
Figure 0.4.13). Since sin x is continuous on the interval [—7/2, 7r/2], Theorem 1.6.2 implies
sin™! x is continuous on the interval [—1, 1]. <

Arguments similar to the solution of Example 2 show that each of the inverse trigono-
metric functions defined in Section 0.4 is continuous at each point of its domain.

When we introduced the exponential function f(x) = b* in Section 0.5, we assumed
that its graph is a curve without breaks, gaps, or holes; that is, we assumed that the graph
of y = b* is a continuous curve. This assumption and Theorem 1.6.2 imply the following
theorem, which we state without formal proof.

1.6.3 THEOREM Letb > 0,b # 1.

(@) The function b* is continuous on (—w, +).

(b) The function log, x is continuous on (0, +).

. . tan~'x +Inx .
» Example 3 Where is the function f(x) = — a1 continuous?

2
Solution. The fraction will be continuous at all points where the numerator and denom-
inator are both continuous and the denominator is nonzero. Since tan~! x is continuous
everywhere and Inx is continuous if x > 0, the numerator is continuous if x > 0. The
denominator, being a polynomial, is continuous everywhere, so the fraction will be contin-
uous at all points where x > 0 and the denominator is nonzero. Thus, f is continuous on
the intervals (0, 2) and (2, +x). <«

OBTAINING LIMITS BY SQUEEZING
In Section 1.1 we used numerical evidence to conjecture that
. sinx
lim
x—=0 Xx

=1 2)

However, this limit is not easy to establish with certainty. The limit is an indeterminate
form of type 0/0, and there is no simple algebraic manipulation that one can perform to
obtain the limit. Later in the text we will develop general methods for finding limits of
indeterminate forms, but in this particular case we can use a technique called squeezing.

The method of squeezing is used to prove that f(x)— L as x — c by “trapping” or
“squeezing” f between two functions, g and s, whose limits as x — ¢ are known with
certainty to be L. As illustrated in Figure 1.6.2, this forces f to have a limit of L as well.
This is the idea behind the following theorem, which we state without proof.



The Squeezing Theorem also holds for
one-sided limits and limits at +oc and
—co. How do you think the hypotheses
would change in those cases?

A Figure 1.6.3

> Figure 1.6.4
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1.6.4 THEOREM (The Squeezing Theorem) Let f, g, and h be functions satisfying

gx) = f(x) < h(x)

for all x in some open interval containing the number c, with the possible exception that
the inequalities need not hold at c. If g and h have the same limit as x approaches c,
say lim g(x) = lim h(x) = L
X—>C X—>C

then f also has this limit as x approaches c, that is,

lim f(x) =L

To illustrate how the Squeezing Theorem works, we will prove the following results,
which are illustrated in Figure 1.6.3.

1.6.5 THEOREM

sin x

=1 b)

(@) lim
x—0 x x—0 X

PROOF (a) In this proof we will interpret x as an angle in radian measure, and we will
assume to start that 0 < x < /2. As illustrated in Figure 1.6.4, the area of a sector with
central angle x and radius 1 lies between the areas of two triangles, one with area % tan x
and the other with area % sin x. Since the sector has area %x (see marginal note), it follows
h
that 1 1

—tanx > —x > —Ssinx

2 2 2

Multiplying through by 2/(sin x) and using the fact that sinx > 0 for 0 < x < 7/2, we

obtain 1 X

= >1

COS X sin x

Next, taking reciprocals reverses the inequalities, so we obtain

sin x
cosx < — <1 3)
X

which squeezes the function (sin x)/x between the functions cosx and 1. Although we
derived these inequalities by assuming that 0 < x < 7/2, they also hold for —7/2 < x < 0
[since replacing x by —x and using the identities sin(—x) = — sin x, and cos(—x) = cos x

(1, tanx)
4/:’ (cosx, sinx)

Yoo L™ L B
x Vo fx X x 1\
S~ 1 1 1
1 Areaof triangle > Areaof sector > Areaof triangle
tanx S X S sinx
2 - 2 = 2
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leaves (3) unchanged]. Finally, since
Recall that the area A of a sector of ra-

dius r and central angle 0 is limcosx =1 and Ilim1=1
x—0 x—0
1, . . .

d= T the Squeezing Theorem implies that
This can be derived from the relation- . sinx
ship lim =

x—=0 Xx
A 0 . . L I .
el PROOF (b) For this proof we will use the limit in part (a), the continuity of the sine
. function, and the trigonometric identity sin? x = 1 — cos” x. We obtain

which states that the area of the sector
is to the area of the circle as the central 1 — cos x 1 —cosx 1+ cosx sin? x
angle of the sector is to the central an- lim —— = lim . =lim ——
gle of the circle. x=0 X =0 X 1+ cosx x=0 (1 4 cos x)x

1. Sinx 1 Sinx (1) 0 0 ]
- = im m —— | = Paa B
Area = A x>0 x x—0 14 cosx 141

» Example 4 Find

O . .
. tanx . sin26 . sin3x
(a) lim —— (b) lim (c) lim —
x—0 Xx 6—0 x—0 8in Sx
Solution (a).
t i 1 i 1
lim —=% = im (Smx : ) - (lim Smx) (lim ) =M1 =1
x—0 X x—0 X COS X x—>0 X x—>0 COSX
Solution (b). The trick is to multiply and divide by 2, which will make the denominator
the same as the argument of the sine function [ just as in Theorem 1.6.5(a)]:
in 26 in 26 in 26
lim S = lim 2 2o =2 fim oo
6>0 6 00 26 00 26
Now make the substitution x = 26, and use the fact that x — 0 as 6 — 0. This yields
sin 260 . sin20 . sinx
im =2 lim =2 lim =2(1)=2
0—0 0 6—0 260 x—=0 Xx
TECHNOLOGY MASTERY Solution (c).
Use a graphing utility to confirm the sin 3x 3. sin 3x
limits in Example 4, and if you have a . sin 3x . x . 3x 3.1 3
CAS, use it to obtain the limits. xlino Sin 5x meO Sin 5x meO 5 Sin 5x 5.1 5
X Sx
y e —
i » Example 5 Discuss the limits
.. (1 . e
(a) lim sin ( — (b) lim xsin | —
‘ ‘ X x—0 X x—0 X
-1 1
Solution (a). Let us view 1/x as an angle in radian measure. As x — 0T, the angle
1/x approaches +o, so the values of sin(1/x) keep oscillating between —1 and 1 without
a approaching a limit. Similarly, as x — 0™, the angle 1/x approaches —oo, so again the
values of sin(1/x) keep oscillating between —1 and 1 without approaching a limit. These

y=sin (l) conclusions are consistent with the graph shown in Figure 1.6.5. Note that the oscillations
X become more and more rapid as x — 0 because 1/x increases (or decreases) more and more
A Figure 1.6.5 rapidly as x approaches 0.
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Solution (b). Since

-l <sin|—) <1
Confirm (4) by considering the cases X
x > 0 and x < 0 separately. . .
it follows that if x # 0, then

1
— < i — <
y y:lx| |'x| = xsm <x> — |'x| (4)

Since |x| — 0 as x — 0, the inequalities in (4) and the Squeezing Theorem imply that
/ X

1
lim x sin (—> =0
x—0 X

This is consistent with the graph shown in Figure 1.6.6. «

/

y=-Ix
y=Xsn (%)
A Figure 1.6.6 REMARK | It follows from part (b) of this example that the function
_ Jxsin(1/x), x#0
fx) = {07 Y =0

is continuous at x = 0, since the value of the function and the value of the limit are the same at 0.
This shows that the behavior of a function can be very complex in the vicinity of x = ¢, even though
the function is continuous at c.

l/ QUICK CHECK EXERCISES 1.6  (See page 128 for answers.)

1. Ineach part, is the given function continuous on the interval 3. Suppose a function f has the property that for all real num-
[0, /2)? bers x _
(a) sinx (b) cosx (c) tanx (d) cscx 3l = f) =3+ Ix
2. Evaluate From this we can conclude that f(x) > asx—
(@ lim sin x
=0 X 4. In each part, give the largest interval on which the function
1 —cosx
(b) lim ———. is continuous.
o (a) e (b) Inx (c) sin'x (d) tan'x
EXERCISE SET 1.6 [ Graphing Utility
1-8 Find the discontinuities, if any. 9-14 Determine where f is continuous.
— gqin~!
1 f(x) = sin(x? —2) 2. f(x) = cos <L> 9. f(x) =sin™" 2x
x—7n 10. f(x) =cos~'(Inx)
3. f(x) = |cotx]| 4. f(x) =secx In(tan" x) sin x
1 11. f(x) = ———— 12. f(x) =exp| —
5. f(x) =cscx 6. f(x) = ———— x2 -9 x
1+ sin”x
sin~!(1/x)
7. f(x) = T 25 8. f(x) =+v2+tan2x 13. f(x) = T 14. f(x) =In|x| —2In(x + 3)
—2sinx
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15-16 Ineach part, use Theorem 1.5.6(b) to show that the func-
tion is continuous everywhere.

(b) |sinx| () cos’(x + 1)
(b) sin(sinx)

15. (a) sin(x® +7x + 1)

16. (a) |3 + sin2x]|
(©) cos’x —2cosPx + 1

17-40 Find the limits.

1
17. lim cos| — 18. lim sin ™
x— o X x>+ 2 —3x
1
19. lim sin*l( a ) 20. lim In <x+ )
x— o 1—2x x—+w X
21. lim &¥"* 22. lim cos(2tan”' x)
x—0 X —> 4w
23. fim 237 24, 1im S/
60 @ h—0 2h
. )
25. lim S0? 26. 1im 07
60+ 62 >0 O
27. 1im A7 28, 1im Sm6*
x—0 sin 3x x—0 sin 8x
. =2
Sin x sin~ x
29. lim -2t . lim — >
9. lim, eV 30. lim =
. 2 . h
31, lim S2F 32 lim —
x—0 X h—01—cosh
t2
33, lim —— 34, lim — >
101 —cos2t x—>0 cos(%n—x)
02 1 —cos3h
35. lim — 36. lim — 2"
6—>01 —cos6 h—0 cos?5h — 1
1 2 _35i
37. lim sin (7) 38. lim =1
x—0t X x—0 X

2 —cos3x — cos4dx

39. lim
x—0 X

10, Tim tan 3x2 + sin® 5x
x—0 x2

41-42 (a) Complete the table and make a guess about the limit
indicated. (b) Find the exact value of the limit.

a1 f0 = "2 him o)

X | 4]45|49|51|55]|6
f(x)

< Table Ex-41

sin(x? + 3x +2) )

2. f) =" I f@)

X | -21|-201|-2001| -1.999 | -1.99 | -1.9
()

A Table Ex-42

43-46 True-False Determine whether the statement is true or
false. Explain your answer.

43. Suppose that for all real numbers x, a function f satisfies
[f(x) + 5] < [x + 1]
Then lim, _, _; f(x) = =5.
44. For 0 < x < 7/2, the graph of y = sinx lies below the
graph of y = x and above the graph of y = x cos x.
45. If an invertible function f is continuous everywhere, then
its inverse f~! is also continuous everywhere.

46. Suppose that M is a positive number and that for all real
numbers x, a function f satisfies

M =< f(x) =M
Then
limxf) =0 and lim 202 —0
x—0 xX—>+4» X

FOCUS ON CONCEPTS

47. In an attempt to verify that lim, _, ¢ (sin x)/x = 1, a stu-
dent constructs the accompanying table.
(a) What mistake did the student make?
(b) What is the exact value of the limit illustrated by
this table?

X -0.01
sinx/x | 0.017453

—-0.001 0.001 0.01
0.017453 | 0.017453 | 0.017453

A Table Ex-47

48. In the circle in the accompanying figure, a central an-
gle of measure 6 radians subtends a chord of length
¢(0) and a circular arc of length s(6). Based on your
intuition, what would you conjecture is the value of
limg _, o+ ¢(8)/s(9)? Verify your conjecture by com-
puting the limit.

< Figure Ex-48

49. Find a nonzero value for the constant k that makes

tan kx

flx) = x
3x +2k%, x>0

, x <0

continuous at x = 0.
50. Is
sin x
—), x#0
Sx) =1 Ix|
1, x=0

continuous at x = 0? Explain.



51.

52.

53.

5S.

56.

1.6 Continuity of Trigonometric, Exponential, and Inverse Functions

In parts (a)—(c), find the limit by making the indicated sub-

stitution. )
lim xsin—; = —
X —> +x X

(b) lim x (1

(¢ lim —; t=7—x
x—7 sinx
Find Tim "0 [Hint: Lett =~ — f.]
=2 x=2 2 X
. . sin(mx) . . tanx—1
Find lim . 54. Find lim ———.
=1 x—1 x>n/4 X—T/4
Find lim cosx — sinx
x—n/4 X — 7'[/4

Suppose that f is an invertible function, f(0) =0, f is
continuous at 0, and lim,_, o( f(x)/x) exists. Given that
L = lim,_,(f(x)/x), show

. X
lim ——— =
x=0 f~1(x)

[Hint: Apply Theorem 1.5.5 to the composition /2 o g, where

hoo = [0 <20

and g(x) = £~ (x).]

57-60 Apply the result of Exercise 56, if needed, to find the

limits.
tan—!
57. lim — 58. lim — %
x—=>0s8mn" " x x—0 X
. _1 . _1
5 —1
59. lim o Y 60. lim S~ D
x—0 x x—1 x2 -1

I~ 61. Use the Squeezing Theorem to show that

63.

. 507
lim x cos — =0
x—0 X

and illustrate the principle involved by using a graphing
utility to graph the equations y = |x|, y = —|x|, and
y = x cos(507r/x) on the same screen in the window
[—1,1] x [—1, 1].

. Use the Squeezing Theorem to show that

(%)~

and illustrate the principle involved by using a graph-
ing utility to graph the equations y = x%, y = —x?, and
y = x2sin(507/ /x) on the same screen in the window
[—0.5,0.5] x [—0.25, 0.25].

In Example 5 we used the Squeezing Theorem to prove

lim x? sin
x—0

that
. . (1
lim xsin{ — ) =0
x—0 X

R 65.

66.

127

Why couldn’t we have obtained the same result by writ-

ing
1 1
x x
1
-1 =0?
(%)
. Sketch the graphs of the curves y = 1 — x2, y = cos x,

and y = f(x), where f is a function that satisfies the
inequalities

= lim x - lim sin
x—0 x—0

lim x sin

X —>

=0- lim sin
x—0

1 —x? < f(x) <cosx

for all x in the interval (—7/2, 7/2). What can you say
about the limit of f(x) as x — 0? Explain.

Sketch the graphs of the curves y = 1/x, y = —1/x,
and y = f(x), where f is a function that satisfies the
inequalities

2| =

< fx) =

| =

for all x in the interval [1, 4-00). What can you say about
the limit of f(x) as x — +? Explain your reasoning.

Draw pictures analogous to Figure 1.6.2 that illus-
trate the Squeezing Theorem for limits of the forms
lim, _, 4o f(x) and lim, _, _, f(x).

67.

68.

™ 69.

(a) Use the Intermediate-Value Theorem to show that the
equation x = cosx has at least one solution in the in-
terval [0, 7r/2].

(b) Show graphically that there is exactly one solution in
the interval.

(c) Approximate the solution to three decimal places.

(a) Use the Intermediate-Value Theorem to show that the
equation x + sinx = 1 has at least one solution in the
interval [0, 77/6].

(b) Show graphically that there is exactly one solution in
the interval.

(c) Approximate the solution to three decimal places.

In the study of falling objects near the surface of the Earth,
the acceleration g due to gravity is commonly taken to be
a constant 9.8 m/s?>. However, the elliptical shape of the
Earth and other factors cause variations in this value that
depend on latitude. The following formula, known as the
World Geodetic System 1984 (WGS 84) Ellipsoidal Grav-
ity Formula, is used to predict the value of g at a latitude of
¢ degrees (either north or south of the equator):

1 4+ 0.0019318526461 sin* ¢ )
m/s

g = 9.7803253359
V1 = 0.0066943799901 sin2 ¢

(cont.)
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(a) Use a graphing utility to graph the curve y = g(¢) for
0° < ¢ < 90°. What do the values of g at ¢ = 0° and
at ¢ = 90° tell you about the WGS 84 ellipsoid model
for the Earth?

(b) Show that g = 9.8 m/s> somewhere between latitudes
of 38° and 39°.

70. Writing In your own words, explain the practical value of
the Squeezing Theorem.

‘/QUICK CHECK ANSWERS 1.6

71. Writing A careful examination of the proof of Theorem
1.6.5 raises the issue of whether the proof might actually
be a circular argument! Read the article “A Circular Ar-
gument” by Fred Richman in the March 1993 issue of The
College Mathematics Journal, and write a short report on
the author’s principal points.

1. (a) yes (b) yes (c) yes (d) no

CHAPTER 1 REVIEW EXERCISES

2.1 (b)) 0 3.30 4. (a) (—w,+x) (b) (0,+x) (c) [—1,1] (d) (—o, +x)

~ Graphing Utility CAS

1. For the function f graphed in the accompanying figure, find
the limit if it exists.

@ lim f(x)
@ lim f(x)
(&) lim f(x)

(b) lim f(x)
© lim fe)

() lim f()

© lim f(x)
) lim f(x)
() lim £()

X

1 1 1 1 1 1 1
-1 1 2 3 45 6 7 8 <«Figure Ex-1
2. Ineach part, complete the table and make a conjecture about
the value of the limit indicated. Confirm your conjecture by
finding the limit analytically.

-2
@ f) =5

i,

4
X 2.00001 | 2.0001 | 2001 | 201 | 21| 25
f(x)
tan 4x .
(b) f(x)=——; lim f(x)
X x—0

4. Approximate

x | -0.01| -0.001 | —0.0001 | 0.0001 | 0.001 | 0.01

f(x)

™ 3. (a) Approximate the value for the limit
3x )X

lim

x—0 X

to three decimal places by constructing an appropriate
table of values.
(b) Confirm your approximation using graphical evidence.

2* -8

m
x—3 x—3

both by looking at a graph and by calculating values for
some appropriate choices of x. Compare your answer with
the value produced by a CAS.

5-10 Find the limits.

Cox3—x? X3 —x?
5. lim 6. lim
x—»>—-1 x—1 x—>1 x—1
3 9 2
7. lim -2 8. lim ~*
x—>—3x2+4x—|—3 x—>2-x —2
2x —1)°
9. lim @x—1D
x—+2 (3x2 + 2x — T)(x3 — 9x)
o oAxE+4-2
10. Iim —M——
x—0 x2
11. In each part, find the horizontal asymptotes, if any.
@) 2x — 17 ) 3 —x2+10
) y= —— =
YTV 4 Y 3x2 —4x
© 2x2 -6
c = ——
Y x2+5x

12. In each part, find lim, _,, f(x), if it exists, where a is re-
placed by 0, 5%, =57, —5, 5, —oo, and +co.
(@ fx)=+5—x

_J&x=5)/Ix =5, x#5
() fx) = {0’ N
13-20 Find the limits.
in3 .
13. lim 2>Y 4. lim 0t
x—0 tan 3x x—>01—cosx
3x — sin(k
15. lim w’ k#0
x—0 X
1_
16. lim tan <7C°SG>
0—0 0

17. lim ™'
t— /2%

18. lim In(sin260) — In(tan )
60— 0t



19.
21.

22,

1 23.

24,

25.

26.

27.

20. lim

X — 4o

3\ an\ bx

lim <1+7) (1+2)" ab>0
X — 4o X X
If $1000 is invested in an account that pays 7% interest
compounded n times each year, then in 10 years there will
be 1000(1 4+ 0.07/n)'%" dollars in the account. How much
money will be in the account in 10 years if the interest is
compounded quarterly (n = 4)? Monthly (n = 12)? Daily
(n = 365)? Determine the amount of money that will be
in the account in 10 years if the interest is compounded
continuously, that is, as n — +oo.

(a) Write a paragraph or two that describes how the limit
of a function can fail to exist at x = a, and accompany
your description with some specific examples.

(b) Write a paragraph or two that describes how the limit
of a function can fail to exist as x — +o or x — —oo,
and accompany your description with some specific
examples.

(c) Write a paragraph or two that describes how a function
can fail to be continuous at x = a, and accompany your
description with some specific examples.

(a) Find a formula for a rational function that has a verti-
cal asymptote at x = 1 and a horizontal asymptote at
y=2.

(b) Check your work by using a graphing utility to graph
the function.

Paraphrase the €-§ definition for lim, ., f(x) = L interms

of a graphing utility viewing window centered at the point

(a, L).

Suppose that f(x) is a function and that for any given
€ > 0, the condition 0 < |[x — 2| < %e guarantees that
|f(x) = 5] <e.

(a) What limit is described by this statement?

(b) Find a value of § such that 0 < |x — 2| < § guarantees

that |8 f(x) — 40| < 0.048.
The limit . sinx
lim =1
x—0 Xx

ensures that there is a number § such that

sin x

— 1| < 0.001

X
if 0 < |x| < §. Estimate the largest such 4.

In each part, a positive number € and the limit L of a function
f ata are given. Find a number é such that | f(x) — L| < €
if0 < |x —al <é.

(a) )}i_)mz(4x -7 =1; ¢e=0.01

4x2 -9
b) i =6 € =005
© hm S —3 ¢

(©) lirrhxz =16; € = 0.001

28.

29.

i~ 30.

31.

32.

33.

34.

35.

36.

37.

Chapter 1 Review Exercises 129

Use Definition 1.4.1 to prove the stated limits are correct.
4x2 -9

b) lim =6

®) x—>3/2 2x =3

Suppose that f is continuous at x¢ and that f(xo) > 0. Give

either an €-§ proof or a convincing verbal argument to show

that there must be an open interval containing xo on which

f(x) > 0.

(a) Let

@ lim(x —7) =1

sinx — sin 1
—1
Approximate lim, _, | f(x) by graphing f and calculat-

ing values for some appropriate choices of x.
(b) Use the identity

fx) =

oa—pf oa+p
2 2
to find the exact value of lim1 f(x).
x—

sina — sin 8 = 2 sin

Find values of x, if any, at which the given function is not
continuous.

@ fx)= e (b) f(x) = |x* —2x2
x+3
© flx)= m
Determine where f is continuous.
@ for)=—> (b) f(x) = cos™ (1)
lx| —3 X
(C) f(x) — elnx
Suppose that
—x*+3, x<2
f(x)={ X249, x>2

Is f continuous everywhere? Justify your conclusion.

One dictionary describes a continuous function as “one
whose value at each point is closely approached by its values
at neighboring points.”

(a) How would you explain the meaning of the terms
“neighboring points” and “closely approached” to a
nonmathematician?

(b) Write a paragraph that explains why the dictionary def-
inition is consistent with Definition 1.5.1.

Show that the conclusion of the Intermediate-Value The-
orem may be false if f is not continuous on the interval
[a, b].

Suppose that f is continuous on the interval [0, 1], that
f(0) = 2, and that f has no zeros in the interval. Prove that
f(x) > 0 forall x in [0, 1].

Show that the equation x* + 5x 4+ 5x — 1 = 0 has at least
two real solutions in the interval [—6, 2].
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In Section 1.1 we developed the notion of a tangent line to a
graph at a given point by considering it as a limiting position
of secant lines through that point (Figure 1.1.4a). In these ex-
ercises we will develop an analogous idea in which secant lines
are replaced by “secant circles” and the tangent line is replaced
by a “tangent circle” (called the osculating circle). We begin
with the graph of y = x2.
1. Recall that there is a unique circle through any three non-
collinear points in the plane. For any positive real number
x, consider the unique “secant circle” that passes through the
fixed point O (0, 0) and the variable points Q(—x, x?) and
P(x, x?) (see the accompanying figure). Use plane geome-
try to explain why the center of this circle is the intersection
of the y-axis and the perpendicular bisector of segment OP.

y=x?
Q(-x, x?) P(x, x?)
Secant
circle
X
| | | | | | | |
=5 0(0,0) 5 Figure Ex-1

2. (a) Let (0, C(x)) denote the center of the circle in Exercise 1
and show that

(b) Show that as x — O™, the secant circles approach a lim-
iting position given by the circle that passes through the
origin and is centered at (0, %) As shown in the accom-

panying figure, this circle is the osculating circle to the
graph of y = x? at the origin.

3. Show that if we replace

5 Figure Ex-2

the curve y = x2 by the curve

y = f(x), where f is an even function, then the formula

for C(x) becomes

1
Cix) = E[f(0)+f(x)+

x2
Jx) — f(O)]

[Here we assume that f(x) # f(0) for positive values of x
closeto 0.] Iflim, _, g+ C(x) = L # f(0), then we define the
osculating circle to the curve y = f(x) at (0, f(0)) to be the
unique circle through (0, f£(0)) with center (0, L). If C(x)
does not have a finite limit different from f(0) asx — 0T, then
we say that the curve has no osculating circle at (0, £(0)).

. In each part, determine the osculating circle to the curve

y = f(x) at (0, £(0)), if it exists.

(@) f(x)=4x?
(© f(x)=|x|
(e) f(x) =cosx

(b) f(x) = x%cosx
(d) f(x) =xsinx

(f) f(x) = x?g(x), where g(x) is an even continuous func-

tion with g(0) # 0
(g fx)=x*
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One of the crowning achievements
of calculus is its ability to capture
continuous motion mathematically,
allowing that motion to be analyzed
instant by instant.

w THE DERIVATIVE

Many real-world phenomena involve changing quantities—the speed of a rocket, the inflation
of currency, the number of bacteria in a culture, the shock intensity of an earthquake, the
voltage of an electrical signal, and so forth. In this chapter we will develop the concept of a
“derivative,” which is the mathematical tool for studying the rate at which one quantity
changes relative to another. The study of rates of change is closely related to the geometric
concept of a tangent line to a curve, so we will also be discussing the general definition of a
tangent line and methods for finding its slope and equation.

m TANGENT LINES AND RATES OF CHANGE

In this section we will discuss three ideas: tangent lines to curves, the velocity of an object
moving along a line, and the rate at which one variable changes relative to another. Our
goal is to show how these seemingly unrelated ideas are, in actuality, closely linked.

TANGENT LINES

In Example 1 of Section 1.1, we showed how the notion of a limit could be used to find
an equation of a tangent line to a curve. At that stage in the text we did not have precise
definitions of tangent lines and limits to work with, so the argument was intuitive and
informal. However, now that limits have been defined precisely, we are in a position to
give a mathematical definition of the tangent linetoacurve y = f(x) atapoint P (xg, f(x¢))
on the curve. As illustrated in Figure 2.1.1, consider a point Q(x, f(x)) on the curve that
is distinct from P, and compute the slope m po of the secant line through P and Q:

Jf(x) = f(xo)

m PO = —
X — Xp

If we let x approach x, then the point Q will move along the curve and approach the point
P. If the secant line through P and Q approaches a limiting position as x — xy, then we
will regard that position to be the position of the tangent line at P. Stated another way, if
the slope m pp of the secant line through P and Q approaches a limit as x — xo, then we
regard that limit to be the slope mq,, of the tangent line at P. Thus, we make the following
definition.

131




132 Chapter 2 / The Derivative

\(\S
\" w
20
590

f(x) = f(xo)

£(x)
f(xo) |-

y =19

» Figure 2.1.1

2.1.1 DEFINITION Suppose that xy is in the domain of the function f. The fangent
line to the curve y = f(x) at the point P(xo, f(x¢)) is the line with equation

y = f(XO) = mtan(x - X())
where

J(x) — f(xo0)

X — Xo

o = i
0

ey

provided the limit exists.
y = f(x) at xo.

For simplicity, we will also call this the tangent line to

» Example 1 Use Definition 2.1.1 to find an equation for the tangent line to the parabola
y = x? at the point P (1, 1), and confirm the result agrees with that obtained in Example 1
of Section 1.1.

Solution. Applying Formula (1) with f(x) = x? and xo = 1, we have
. fx) = f()
My = lim ————~
x—1 X — 1
2
—1
= lim
x—1 x —
—1 1
—im E DD ) =2
x—1 X — 1 x—1

Thus, the tangent line to y = x%at (1, 1) has equation
y—1=2(x—1) orequivalently y=2x —1

which agrees with Example 1 of Section 1.1. «

There is an alternative way of expressing Formula (1) that is commonly used. If we let
h denote the difference
h=x—xg
then the statement that x — x, is equivalent to the statement z — 0, so we can rewrite (1)
in terms of x¢ and & as

o S+ h) — f(xo)
My = lim
h—0 h

@)



Formulas (1) and (2) for m,, usually
lead to indeterminate forms of type
0/0, so you will generally need to per-
form algebraic simplifications or use
other methods to determine limits of

such indeterminate forms.

A Figure 2.1.3
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Figure 2.1.2 shows how Formula (2) expresses the slope of the tangent line as a limit of
slopes of secant lines.

f(xo+h)

f(xg)

> Figure 2.1.2

» Example 2 Compute the slope in Example 1 using Formula (2).

Solution. Applying Formula (2) with f(x) = x? and xo = 1, we obtain
faA+h)—f)

men = T
(A +h?r-1
= hm _—
h—0 h
14+2h+h%—1
—lim T  im@ ) =2
h—0 h h—0

which agrees with the slope found in Example 1. <«

» Example 3 Find an equation for the tangent line to the curve y = 2/x at the point
(2, 1) on this curve.

Solution. First, we will find the slope of the tangent line by applying Formula (2) with
f(x) = 2/x and xo = 2. This yields

fQ+hm - fQ

Men = lim
h—0 h
2 | <2—(2+h)>
= lim 2+h = 1i &
h—0 h h—0 h

. —h . 1 1
=lim —=—({lm —— | =—=
h—0h(2+ h) h—02+h 2
Thus, an equation of the tangent line at (2, 1) is
y—1= —%(x —2) orequivalently y = —%x +2

(see Figure 2.1.3). «
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» Example 4 Find the slopes of the tangent lines to the curve y = /x atxo = 1, x¢ = 4,
and xop = 9.

Solution. We could compute each of these slopes separately, but it will be more efficient
to find the slope for a general value of x, and then substitute the specific numerical values.
Proceeding in this way we obtain

o SO0+ h) = f(xo)
Mgy = lim
h—0 h

vxo+

= lim
h—0

A/ X0 +h X A/ X0 +h4+ . Jx Rationalize the numerator to

= lim help eliminate the indeterminate

h—0 h «/xo +h+ /X0 form of the limit.

. Xo+h—xo
h_’oh(\/xoT-i-«/_)
h
= lim
h=0 h(y/Xo + I + /Xo)
1 1

m =
h—0 «/XO+]’Z+4/)C0 2./xo
The slopes at xop = 1,4, and 9 can now be obtained by substituting these values into our
general formula for my,,. Thus,

1 1
slope at xo = 1: Z_ﬁ =3
slope at xo = 4: L = 1

2J4 4
slope at xo = 9: L = 1
249 6

(see Figure 2.1.4). «

PN W b

» Figure 2.1.4

B VELOCITY
One of the important themes in calculus is the study of motion. To describe the motion of
an object completely, one must specify its speed (how fast it is going) and the direction
in which it is moving. The speed and the direction of motion together comprise what is
called the velocity of the object. For example, knowing that the speed of an aircraft is 500
mi/h tells us how fast it is going, but not which way it is moving. In contrast, knowing that
the velocity of the aircraft is 500 mi/h due south pins down the speed and the direction of
motion.

Later, we will study the motion of objects that move along curves in two- or three-
The velocity of an airplane describes its dimensional space, but for now we will only consider motion along a line; this is called
speed and direction. rectilinear motion. Some examples are a piston moving up and down in a cylinder, a race

Carlos Santa Maria/i Stockphoto
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car moving along a straight track, an object dropped from the top of a building and falling
straight down, a ball thrown straight up and then falling down along the same line, and so
forth.

For computational purposes, we will assume that a particle in rectilinear motion moves
along a coordinate line, which we will call the s-axis. A graphical description of rectilinear
motion along an s-axis can be obtained by making a plot of the s-coordinate of the particle
versus the elapsed time ¢ from starting time ¢t = 0. This is called the position versus time
curve for the particle. Figure 2.1.5 shows two typical position versus time curves. The first
is for a car that starts at the origin and moves only in the positive direction of the s-axis.
In this case s increases as ¢ increases. The second is for a ball that is thrown straight up in
the positive direction of an s-axis from some initial height sy and then falls straight down
in the negative direction. In this case s increases as the ball moves up and decreases as it
moves down.

0
L S
\
\
\
\
S, }
Elapsed time |
Ball | Ball
> moving | moving
7/ A R ‘
L1 i 0 0= S t up | down t
0
Car moves only in the positive direction. Position versus time curve Position versus time curve

A Figure 2.1.5

Show that (4) is also correct for a time
interval [t9 + K, tp], h < O.

The change in position
flto +h) — f(to)

is also called the displacement of the
particle over the time interval between
to and ty + h.

If a particle in rectilinear motion moves along an s-axis so that its position coordinate
function of the elapsed time 7 is
P s = f() 3)

then f is called the position function of the particle; the graph of (3) is the position versus
time curve. The average velocity of the particle over a time interval [fy, o + h], h > 0, is
defined to be

change in position  f(¢to + h) — f(to)

= — 4
Pave time elapsed h @)

» Example 5 Suppose thats = f(t) = 1 + 5¢ — 2t is the position function of a parti-
cle, where s is in meters and ¢ is in seconds. Find the average velocities of the particle over
the time intervals (a) [0, 2] and (b) [2, 3].

Solution (a). Applying (4) with 7o = 0 and & = 2, we see that the average velocity is
floo+n) — flto) _ f2)—-fO) _3-1_2

Vave = :—:1111/8
h 2 2 2

Solution (b). Applying (4) with 7y = 2 and h = 1, we see that the average velocity is
f(to +h) — f(to) _ f3) - f®@ _ —2-3 _ -5

Vave = 7 1 1 T:—Sm/s <«

For a particle in rectilinear motion, average velocity describes its behavior over an in-
terval of time. We are interested in the particle’s “instantaneous velocity,” which describes
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A Figure 2.1.6
Table 2.1.1
TIME INTERVAL AVERAGE
VELOCITY (M/S)
20<t<3.0 -5
20<t<21 -3.2
20<t<2.01 -3.02
2.0<t<£2.001 —3.002
2.0<1<2.0001 —3.0002

Note the negative values for the veloc-

ities in Example 6.

This is consistent

with the fact that the object is mov-

ing in the negative
s-axis.

direction along the

Confirm the solution to Example 5(b)
by computing the slope of an appro-

priate secant line.

its behavior at a specific instant in time. Formula (4) is not directly applicable for com-
puting instantaneous velocity because the “time elapsed” at a specific instant is zero, so
(4) is undefined. One way to circumvent this problem is to compute average velocities
for small time intervals between ¢ = fy and r = #y) + h. These average velocities may be
viewed as approximations to the “instantaneous velocity” of the particle at time #,. If these
average velocities have a limit as & approaches zero, then we can take that limit to be the
instantaneous velocity of the particle at time #,. Here is an example.

» Example 6 Consider the particle in Example 5, whose position function is
s= f(t) =145t —2¢*

The position of the particle at time ¢+ = 2 s is s = 3 m (Figure 2.1.6). Find the particle’s
instantaneous velocity at time ¢ = 2 s.

Solution. As a first approximation to the particle’s instantaneous velocity at time 1 = 2
s, let us recall from Example 5(b) that the average velocity over the time interval from r = 2
to ¢ = 3 iS vae = —5 m/s. To improve on this initial approximation we will compute the
average velocity over a succession of smaller and smaller time intervals. We leave it to
you to verify the results in Table 2.1.1. The average velocities in this table appear to be
approaching a limit of —3 m/s, providing strong evidence that the instantaneous velocity
at time t = 2 s is —3 m/s. To confirm this analytically, we start by computing the object’s
average velocity over a general time interval between t = 2 and ¢ = 2 + & using Formula

4):
@ _f(2+h)—f(2):[1+5(2+h)—2(2+h)2]—3

Vave = h h

The object’s instantaneous velocity at time ¢ = 2 is calculated as a limit as 7 — 0:

. . . [1+5Q2+h) =22 +h)*] -3
instantaneous velocity = lim

h—0 h
. =24+ (104 5h) — (8 + 8h +2h?)
= lim
h—0 h
. —3h —2h? .
=lm — =1lim(-3—-2h) = -3
h—0 h h—0

This confirms our numerical conjecture that the instantaneous velocity after 2 s is —3 m/s.
<

Consider a particle in rectilinear motion with position function s = f(z). Motivated by
Example 6, we define the instantaneous velocity v, Of the particle at time 7, to be the limit
as h— 0 of its average velocities v,y Over time intervals between ¢t = g and t =ty + h.
Thus, from (4) we obtain

fto +h) — f(to)
h

Vinst = hlgr}) (5)
Geometrically, the average velocity v, between t =ty and t = 7y + & is the slope of the
secant line through points P (g, f(#y)) and Q(ty + h, f(ty + h)) on the position versus time
curve, and the instantaneous velocity viyg at time 7y is the slope of the tangent line to the
position versus time curve at the point P (o, f(#y)) (Figure 2.1.7).



7

A 1-unit increase in X always
produces an m-unit change in y.

A Figure 2.1.8
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f(ty+h)

f(to)

> Figure 2.1.7

Il SLOPES AND RATES OF CHANGE

Velocity can be viewed as rate of change—the rate of change of position with respect to
time. Rates of change occur in other applications as well. For example:

* A microbiologist might be interested in the rate at which the number of bacteria in a
colony changes with time.

* Anengineer might be interested in the rate at which the length of a metal rod changes
with temperature.

* An economist might be interested in the rate at which production cost changes with
the quantity of a product that is manufactured.

* A medical researcher might be interested in the rate at which the radius of an artery
changes with the concentration of alcohol in the bloodstream.

Our next objective is to define precisely what is meant by the “rate of change of y with
respect to x”” when y is a function of x. In the case where y is a linear function of x, say
y = mx + b, the slope m is the natural measure of the rate of change of y with respect to x.
As illustrated in Figure 2.1.8, each 1-unit increase in x anywhere along the line produces
an m-unit change in y, so we see that y changes at a constant rate with respect to x along
the line and that m measures this rate of change.

» Example 7 Find the rate of change of y with respect to x if
(@ y=2x—1 b)) y=-5x+1

Solution. In part (a) the rate of change of y with respect to x is m = 2, so each 1-unit
increase in x produces a 2-unit increase in y. In part (b) the rate of change of y with respect
to x is m = —5, so each 1-unit increase in x produces a 5-unit decrease in y. <

In applied problems, changing the units of measurement can change the slope of a line,
so it is essential to include the units when calculating the slope and describing rates of
change. The following example illustrates this.

» Example 8 Suppose that a uniform rod of length 40 cm (= 0.4 m) is thermally insu-
lated around the lateral surface and that the exposed ends of the rod are held at constant
temperatures of 25°C and 5°C, respectively (Figure 2.1.9a). It is shown in physics that
under appropriate conditions the graph of the temperature 7' versus the distance x from the
left-hand end of the rod will be a straight line. Parts (b) and (c¢) of Figure 2.1.9 show two
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A Figure 2.1.9
y

A Figure 2.1.10

such graphs: one in which x is measured in centimeters and one in which it is measured in
meters. The slopes in the two cases are

_5-25_ -0 ©
TT40-0" 40 =
5-25 —20
— _50 %)

m = - =

04-0 04
The slope in (6) implies that the temperature decreases at a rate of 0.5°C per centimeter
of distance from the left end of the rod, and the slope in (7) implies that the temperature
decreases at a rate of 50°C per meter of distance from the left end of the rod. The two
statements are equivalent physically, even though the slopes differ. «

Although the rate of change of y with respect to x is constant along a nonvertical line
y = mx + b, this is not true for a general curve y = f(x). For example, in Figure 2.1.10
the change in y that results from a 1-unit increase in x tends to have greater magnitude in
regions where the curve rises or falls rapidly than in regions where it rises or falls slowly.
As with velocity, we will distinguish between the average rate of change over an interval
and the instantaneous rate of change at a specific point.
If y = f(x), then we define the average rate of change of y with respect to x over the
interval [x(, x1] to be
S(x1) — f(xo)

Tave = (8)
X1 — Xo
and we define the instantaneous rate of change of y with respect to x at x to be
. flxn) — f(xo)
Vinst = lim —— (9)
X1 —>Xo X1 — X0

Geometrically, the average rate of change of y with respect to x over the interval [xg, x;] is
the slope of the secant line through the points P (xo, f(x)) and Q(xy, f(x1)) (Figure2.1.11),
and the instantaneous rate of change of y with respect to x at x is the slope of the tangent
line at the point P (xo, f(xo)) (since it is the limit of the slopes of the secant lines through P).

— (ae

Swoe®
fxy) = f(xo)

fx)

f(x,)

P Figure 2.1.11

If desired, we can let & = x; — x¢, and rewrite (8) and (9) as
f(xo+h) — f(xo)
Taye =
h
o Jo+h) — fxo)
Finst = lim
h—0 h

(10)

Y



Perform the calculations in Example 9
using Formulas (10) and (11).

Weight Lifting Stress Test
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A Figure 2.1.12
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» Example9 Lety=x>+1.

(a) Find the average rate of change of y with respect to x over the interval [3, 5].

(b) Find the instantaneous rate of change of y with respect to x when x = —4.

Solution (a). We will apply Formula (8) with f(x) = x> 4+ 1, xo = 3, and x; = 5. This
yields _ f) = fxo)  f5)— fB3)  26-10
ave — x1 o _)CO —_ 5 — 3 = 2 =

Thus, y increases an average of 8 units per unit increase in x over the interval [3, 5].

8

Solution (b). We will apply Formula (9) with f(x) = x> + 1 and xo = —4. This yields
SO — f(xo) i SO — (=4 (xf+1)—17
= "= lim ——————~ lim ——

Tinst = lim -
X1 — Xo X1 — Xo x—>—4  x; —(—4) xp—>—4 x| +4
216 4 —4
= gim AT g D@D e =8
x—>-4 x;+4 x;——4 x;+4 x;——4
Thus, a small increase in x from x = —4 will produce approximately an 8-fold decrease

iny. «

RATES OF CHANGE IN APPLICATIONS

In applied problems, average and instantaneous rates of change must be accompanied by
appropriate units. In general, the units for arate of change of y with respect to x are obtained
by “dividing” the units of y by the units of x and then simplifying according to the standard
rules of algebra. Here are some examples:

e If y is in degrees Fahrenheit (°F) and x is in inches (in), then a rate of change of y
with respect to x has units of degrees Fahrenheit per inch (°F/in).

e If yisin feet per second (ft/s) and x is in seconds (s), then a rate of change of y with
respect to x has units of feet per second per second (ft/s/s), which would usually be
written as ft/s.

e If y is in newton-meters (N-m) and x is in meters (m), then a rate of change of y with
respect to x has units of newtons (N), since N-m/m = N.

e If y is in foot-pounds (ft-1b) and x is in hours (h), then a rate of change of y with
respect to x has units of foot-pounds per hour (ft-1b/h).

» Example 10 The limiting factor in athletic endurance is cardiac output, that is, the
volume of blood that the heart can pump per unit of time during an athletic competition.
Figure 2.1.12 shows a stress-test graph of cardiac output V in liters (L) of blood versus
workload W in kilogram-meters (kg-m) for 1 minute of weight lifting. This graph illustrates
the known medical fact that cardiac output increases with the workload, but after reaching
a peak value begins to decrease.

(a) Use the secant line shown in Figure 2.1.13a to estimate the average rate of change
of cardiac output with respect to workload as the workload increases from 300 to
1200 kg-m.

(b) Use the line segment shown in Figure 2.1.13b to estimate the instantaneous rate of
change of cardiac output with respect to workload at the point where the workload is
300 kg-m.
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Solution (a). Using the estimated points (300, 13) and (1200, 19) to find the slope of
the secant line, we obtain
19—-13 L
N ——— ~0.0067——
1200 — 300 kg-m
This means that on average a 1-unit increase in workload produced a 0.0067 L increase in
cardiac output over the interval.

Tave

Solution (b). We estimate the slope of the cardiac output curve at W = 300 by sketching
a line that appears to meet the curve at W = 300 with slope equal to that of the curve
(Figure 2.1.13b). Estimating points (0, 7) and (900, 25) on this line, we obtain

25 -7 L
Finst & ——— = 0.02—— <«
900 — 0 kg-m
d d
> >
Z Z
3 3
8 ks
ke el
300 600 900 1200 1500 300 600 900 1200 1500
Workload W (kg-m) Workload W (kg-m)
b Figure 2.1.13 (@ (b)
VQUICK CHECK EXERCISES 2.1 (See page 143 for answers.)
1. The slope my,, of the tangent line to the curve y = f(x) at (a) Initially, the particle moves a distance of ___ ft
the point P (xg, f(xo)) is given by in the (positive/negative) direction; then it
) ] reverses direction, traveling a distance of ___ ft
Mian = XILH}O = ;}Lmo during the remainder of the 5-second period.

2. The tangent line to the curve y = (x — 1) at the point
(—1,4) has equation 4x + y = 0. Thus, the value of the
limit 22y 3
x+1

x——1
is
3. A particle is moving along an s-axis, where s is in feet. Dur-
ing the first 5 seconds of motion, the position of the particle
is given by
s=10—3-0n% 0<t<5

Use this position function to complete each part.

EXERCISE SET 2.1

(b) The average velocity of the particle over the 5-second
period is

. Lets = f(¢) be the equation of a position versus time curve

for a particle in rectilinear motion, where s is in meters and
t is in seconds. Assume that s = —1 when ¢ = 2 and that
the instantaneous velocity of the particle at this instant is 3
m/s. The equation of the tangent line to the position versus
time curve at time t = 2 is

. Suppose that y = x2 + x.

(a) The average rate of change of y with respect to x over
the interval 2 < x < 5is

(b) The instantaneous rate of change of y with respect to x
at x = 2, ringt, 1S given by the limit

1. The accompanying figure on the next page shows the posi-
tion versus time curve for an elevator that moves upward a
distance of 60 m and then discharges its passengers.

(a) Estimate the instantaneous velocity of the elevator at
t =10s.

(b) Sketch a velocity versus time curve for the motion of
the elevator for 0 < ¢ < 20.
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< Figure Ex-1

The accompanying figure shows the position versus time
curve for an automobile over a period of time of 10 s. Use
the line segments shown in the figure to estimate the instan-
taneous velocity of the automobile at time ¢t = 4 s and again
attime t = 8 s.
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Time (s) < Figure Ex-2

The accompanying figure shows the position versus time

curve for a certain particle moving along a straight line.

Estimate each of the following from the graph:

(a) the average velocity over the interval 0 < ¢ < 3

(b) the values of ¢ at which the instantaneous velocity is
Zero

(c) the values of ¢ at which the instantaneous velocity is
either a maximum or a minimum

(d) the instantaneous velocity when t = 3 s.

20
E 151
e
[0}
¢ 10
3
8 5f
| | | | | | | |
0 1 2 3 4 5 6 7 8
Time (s) < Figure Ex-3

The accompanying figure shows the position versus time
curves of four different particles moving on a straight line.
For each particle, determine whether its instantaneous ve-
locity is increasing or decreasing with time.

S S S S

(@) (b) (© (d)

A Figure Ex-4
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FOCUS ON CONCEPTS

5. If a particle moves at constant velocity, what can you
say about its position versus time curve?

6. An automobile, initially at rest, begins to move along
a straight track. The velocity increases steadily until
suddenly the driver sees a concrete barrier in the road
and applies the brakes sharply at time #y. The car de-
celerates rapidly, but it is too late—the car crashes into
the barrier at time #; and instantaneously comes to rest.
Sketch a position versus time curve that might represent
the motion of the car. Indicate how characteristics of
your curve correspond to the events of this scenario.

7-10 For each exercise, sketch a curve and a line L satisfy-
ing the stated conditions.

7. L is tangent to the curve and intersects the curve in at
least two points.

8. L intersects the curve in exactly one point, but L is not
tangent to the curve.

9. L is tangent to the curve at two different points.

10. L is tangent to the curve at two different points and in-
tersects the curve at a third point.

11-14 A function y = f(x) and values of xo and x; are given.

(a) Find the average rate of change of y with respect to x over
the interval [xg, x1].

(b) Find the instantaneous rate of change of y with respect to x
at the specified value of x.

(c) Find the instantaneous rate of change of y with respect to x
at an arbitrary value of x.

(d) The average rate of change in part (a) is the slope of a certain
secant line, and the instantaneous rate of change in part (b)
is the slope of a certain tangent line. Sketch the graph of
y = f(x) together with those two lines.

1. y=2x% x9=0, x1=112. y=x> xg=1, x; =2
13. y=1/x; xo=2, x; =314. y:l/xz; xo=1 x=2

15-18 A function y = f(x) and an x-value x, are given.

(a) Find a formula for the slope of the tangent line to the graph
of f at a general point x = xo.

(b) Use the formula obtained in part (a) to find the slope of the
tangent line for the given value of xy.

15. f(x) =x2—1; xg=—1

16. f(x) =x2>+3x+2; xo=2

17. f(x) =x +/x; xo =1

18. f(x) =1//x; xo =4

19-22 True-False Determine whether the statement is true or
false. Explain your answer.

J) = fM

x—1

19. If lim

x—1

= 3, then hlim w =3.

—0 h
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20.

21.

22,

23.

24.

25.

A tangent line to a curve y = f(x) is a particular kind of
secant line to the curve.

The velocity of an object represents a change in the object’s
position.

A 50-foot horizontal metal beam is supported on either end
by concrete pillars and a weight is placed on the middle of
the beam. If f(x) models how many inches the center of
the beam sags when the weight measures x tons, then the
units of the rate of change of y = f(x) with respect to x are
inches/ton.

Suppose that the outside temperature versus time curve over

a 24-hour period is as shown in the accompanying figure.

(a) Estimate the maximum temperature and the time at
which it occurs.

(b) The temperature rise is fairly linear from 8 A.m. to 2 P.M.
Estimate the rate at which the temperature is increasing
during this time period.

(c) Estimate the time at which the temperature is decreasing
most rapidly. Estimate the instantaneous rate of change
of temperature with respect to time at this instant.

80
70 |-

3 8

w
o
T

Temperature (°F)
8

Time
A Figure Ex-23

The accompanying figure shows the graph of the pressure
p in atmospheres (atm) versus the volume V in liters (L) of
1 mole of an ideal gas at a constant temperature of 300 K
(kelvins). Use the line segments shown in the figure to esti-
mate the rate of change of pressure with respect to volume
at the points where V = 10L and V = 25 L.

Pressure p (atm)

O R, N W b O

I I |
0 5 10 15 20 25 30 35 40

Volume V (L)

< Figure Ex-24

The accompanying figure shows the graph of the height / in
centimeters versus the age ¢ in years of an individual from
birth to age 20.

26.

27.

28.

(a) When is the growth rate greatest?

(b) Estimate the growth rate at age 5.

(c) At approximately what age between 10 and 20 is the
growth rate greatest? Estimate the growth rate at this
age.

(d) Draw a rough graph of the growth rate versus age.

200 -
150 -

100 -

Height h (cm)

50

0 5 10 15 20
Age t (years)

< Figure Ex-25

An object is released from rest (its initial velocity is zero)
from the Empire State Building at a height of 1250 ft above
street level (Figure Ex-26). The height of the object can be
modeled by the position function s = f(t) = 1250 — 16¢>.
(a) Verity that the object is still falling att = 5 s.

(b) Find the average velocity of the object over the time

interval from? =5tor = 6s.
(c) Find the object’s instantaneous velocity at time t = 5 s.

1250

-0 <«Figure Ex-26

During the first 40 s of a rocket flight, the rocket is pro-

pelled straight up so that in ¢ seconds it reaches a height of

s =0.363 ft.

(a) How high does the rocket travel in 40 s?

(b) What is the average velocity of the rocket during the
first 40 s?

(c) What is the average velocity of the rocket during the
first 1000 ft of its flight?

(d) What is the instantaneous velocity of the rocket at the
end of 40 s?

An automobile is driven down a straight highway such that
after 0 < ¢t < 12 seconds it is s = 4.5¢2 feet from its initial
position.

(cont.)
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(a) Find the average velocity of the car over the interval 30. Writing Discuss how the tangent line to the graph of a func-
[0, 12]. tion y = f(x) ata point P (xp, f(xo)) is defined in terms of
(b) Find the instantaneous velocity of the car at t = 6. secant lines to the graph through point P.

29. A robot moves in the positive direction along a straight line 31. Writing A particle is in rectilinear motion during the time
so that after + minutes its distance is s = 6¢* feet from the interval 0 <t < 2. Explain the connection between the in-
origin. stantaneous velocity of the particle at time t = 1 and the
(a) Find the average velocity of the robot over the interval average velocities of the particle during portions of the in-

[2, 4]. terval 0 <t < 2.

(b) Find the instantaneous velocity at ¢ = 2.

l/ QUICK CHECK ANSWERS 2.1

Jx) — flxo)  flxo+h) — flxo)
’ X — Xo ’ h
x24+x)—6 [Q+h)?>+Q2+1)]—6

1

2. —4 3. (a) 9; positive; 4 (b) 1ft/s 4. s=3t—-7

or lim
h—0 h

5. (a) 8 (b) lim2

m THE DERIVATIVE FUNCTION

In this section we will discuss the concept of a “derivative,” which is the primary
mathematical tool that is used to calculate and study rates of change.

Il DEFINITION OF THE DERIVATIVE FUNCTION
In the last section we showed that if the limit

. fxo+h) — fxo)
lim

h—0 h
exists, then it can be interpreted either as the slope of the tangent line to the curve y = f(x) at
X = xp or as the instantaneous rate of change of y with respect to x at x = x( [see Formulas
(2) and (11) of that section]. This limit is so important that it has a special notation:

f(xo-i-h;—f(xo) 0

You can think of f” (read “ f prime”) as a function whose input is x( and whose output is
the number f”(x() that represents either the slope of the tangent line to y = f(x) at x = xg
or the instantaneous rate of change of y with respect to x at x = xy. To emphasize this
function point of view, we will replace xy by x in (1) and make the following definition.

fl(xo0) = ;}1_?10

2.2.1 DpEFINITION The function f’ defined by the formula

Jx+h) — f)
h

The expression
S+ h) = f@) f'(x) = lim
h h—0

that appears in (2) is commonly called
the difference quotient.

@)

is called the derivative of f with respect to x. The domain of f’ consists of all x in the
domain of f for which the limit exists.

The term “derivative” is used because the function f’ is derived from the function f by
a limiting process.

» Example 1 Find the derivative with respect to x of f(x) = x2, and use it to find the
equation of the tangent line to y = x? at x = 2.
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. y Solution. 1t follows from (2) that
L 2
I ! / SR = f) )=
8 f'x)=1lm —— = lim ——
L h—0 h h—0 h
| X2 4 2xh+hE—x? . 2xh+ h?
6 = lim = lim ————
sk h—0 h h—0 h
3r Thus, the slope of the tangent line to y = x? at x = 2 is f'(2) = 4. Since y = 4 if x = 2,
2 the point-slope form of the tangent line is
1r . y—4=4(x-2)
J3 _‘2 _‘1 ‘1 ‘2 é which we can rewrite in slope-intercept form as y = 4x — 4 (Figure 2.2.1). «
A Figure 2.2.1

You can think of f” as a “slope-producing function” in the sense that the value of f’(x)
at x = x¢ is the slope of the tangent line to the graph of f at x = xo. This aspect of
the derivative is illustrated in Figure 2.2.2, which shows the graphs of f(x) = x? and its
derivative f’(x) = 2x (obtained in Example 1). The figure illustrates that the values of
f/(x) =2x at x = —2, 0, and 2 correspond to the slopes of the tangent lines to the graph
of f(x) = x? at those values of x.

y
or y =109 = x2 y
8,
A y=f(=2
T 3L }
6 2L }
5r- 1+ |
| | | | | l | | X
ar -4 -3 -2 1 1 2 3 4
3f | -
2k
Slope = -4 2r Slope = 4 } _3
1 Ll
| | | | | \f
-3 -2 -1 1 2 3
> Figure 2.2.2 Slope =0

In general, if f'(x) is defined at x = x, then the point-slope form of the equation of the
tangent line to the graph of y = f(x) at x = x¢ may be found using the following steps.

Finding an Equation for the Tangent Line to y = f(x) at x = xy.

Step 1. Evaluate f(x¢); the point of tangency is (xg, f(xg))-

Step 2. Find f’(x) and evaluate f’(xo), which is the slope m of the line.

Step 3. Substitute the value of the slope m and the point (xg, f(xg)) into the point-slope
form of the line 9 — o) = Pl — )

or, equivalently,

y = f(x0) + f'(x0)(x — x0) 3
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» Example 2

(a) Find the derivative with respect to x of f(x) = x> — x.

In Soluti , the bi ial f lai . . .

uns eg;‘s:pgan) p (xe +‘2‘;T‘$hi:;::nz;: (b) Graph f and f’ together, and discuss the relationship between the two graphs.
may be found on the front endpaper. .

Solution (a).

Jx+h) — fx)

fx) = lim

h
[+ h) = (x+ )] =[x —x]
= lim
h—0 h
yo, o3 H+3x2h +3xhr+ R — x —h] — [x3 — x]
f f = lim
5 h—0 h
. 3x*h +3xh*>+h3—h
= lim
1k h—0 h
‘ X = lim[3x2+3xh+h>—1]=3x>—1
- \ 1 5 h—0
- Solution (b). Since f'(x) can be interpreted as the slope of the tangent line to the graph
Ll of y = f(x) at x, it follows that f’(x) is positive where the tangent line has positive
slope, is negative where the tangent line has negative slope, and is zero where the tangent
line is horizontal. We leave it for you to verify that this is consistent with the graphs of
A Figure 2.2.3 f(x) =x3 —xand f'(x) = 3x> — 1 shown in Figure 2.2.3. <«
y y=mx+b . . .. .
» Example 3 At each value of x, the tangent line to a line y = mx + b coincides with
the line itself (Figure 2.2.4), and hence all tangent lines have slope m. This suggests
geometrically that if f(x) = mx + b, then f’(x) = m for all x. This is confirmed by the
X following computations:
| I —
f/(x) — llm f(x + ) f(x)
At each value of x the h—0 h
tangent line has slope m. B [m(x + h) + b] — [mx + b]
A Figure 2.2.4 =,m h
mh )
=lim —=lmm=m <«
h—0 h h—0

The result in Example 3 is consistent

with our earlier observation that the

rate of change of y with respect to x _
along a line y = mx + b is constant > Example 4
and that constant is .

(a) Find the derivative with respect to x of f(x) = /x.
(b) Find the slope of the tangent line to y = /x at x = 9.

(c) Find the limits of f’(x) as x — 0" and as x — 4o, and explain what those limits say
about the graph of f.

Solution (a). Recall from Example 4 of Section 2.1 that the slope of the tangent line to
y = /X atx = xq is given by mu, = 1/(2/x¢ ). Thus, f'(x) = 1/(2/x).

Solution (b). The slope of the tangent line at x = 9 is f/(9). From part (a), this slope is
'O =1/2V9) = 1.
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3
2
1
X
1 1 1 1 1 1 1 1 1
123 456789
y=f(x)=+x
y
3 |
2
1
| I I T 1 + é
123 456 789
’ 1
=f'(x) = —
y =1 N
A Figure 2.2.5

Solution (¢). The graphsof f(x) = /x and f'(x) = 1/(24/x ) are shown in Figure 2.2.5.
Observe that f'(x) > 0if x > 0, which means that all tangent lines to the graph of y = /x
have positive slope at all points in this interval. Since

1 1
lim = and lim —— =0
x— 0t Zﬁ o X — o 2\/;

the graph of f becomes more and more vertical as x — 0" and more and more horizontal
as x — +ow. <«

COMPUTING INSTANTANEOUS VELOCITY
It follows from Formula (5) of Section 2.1 (with ¢ replacing #y) thatif s = f(¢) is the position
function of a particle in rectilinear motion, then the instantaneous velocity at an arbitrary
time ¢ is given by fh) — f(t

b — i LOED = SO

h—0 h

Since the right side of this equation is the derivative of the function f (with ¢ rather than x
as the independent variable), it follows that if f(¢) is the position function of a particle in
rectilinear motion, then the function

h) —
f(t+})l f@) @)

() = f'(1) = lim

represents the instantaneous velocity of the particle at time ¢. Accordingly, we call (4) the
instantaneous velocity function or, more simply, the velocity function of the particle.

» Example 5 Recall the particle from Example 5 of Section 2.1 with position function
s = f(t) = 145t — 2¢>. Here f(t) is measured in meters and ¢ is measured in seconds.
Find the velocity function of the particle.

Solution. Tt follows from (4) that the velocity function is

. fa4+h) = f() . [L450+h) =2+ )] = [1+ 5 — 217]
v(t) = lim = lim
h—0 h h—0 h
. =2[>+2th+h* — 1?1+ 5h . —4th —2h% +5h
= lim =lim ———
h—0 h—0 h

h
= lim (41 —2h +5) =5 — 41

where the units of velocity are meters per second. <

DIFFERENTIABILITY

It is possible that the limit that defines the derivative of a function f may not exist at certain
points in the domain of f. At such points the derivative is undefined. To account for this
possibility we make the following definition.

2.2.2 DEFINITION A function f is said to be differentiable at x, if the limit

f(xo +h) — f(xo)
h

/ — 1
S (x0) . 5)
exists. If f is differentiable at each point of the open interval (a, b), then we say that it
is differentiable on (a, b), and similarly for open intervals of the form (a, +), (—o, b),
and (—oo, +0). In the last case we say that f is differentiable everywhere.
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Geometrically, a function f is differentiable at x if the graph of f has a tangent line at
xo. Thus, f is not differentiable at any point xy where the secant lines from P (xg, f(x¢)) to
points Q(x, f(x)) distinct from P do not approach a unique nonvertical limiting position
as x — xy. Figure 2.2.6 illustrates two common ways in which a function that is continuous
at xo can fail to be differentiable at xo. These can be described informally as

® corner points

* points of vertical tangency

Ata corner point, the slopes of the secant lines have different limits from the left and from the
right, and hence the two-sided limit that defines the derivative does not exist (Figure 2.2.7).
Ata point of vertical tangency the slopes of the secant lines approach +oc or —oo from the left
and from the right (Figure 2.2.8), so again the limit that defines the derivative does not exist.

Y y
 y=1x)
|
N y=1 |
|
|
! \
! \
| X | X
Xo Xo
Point of
C int :
> Figure 2.2.6 orner poin vertical tangency
SIOD@ ¢
% \
%,
%’a P
X
® Q
Q \
| | 9
| | b/
P ‘ | < S
‘ | xQ
‘ \ | \‘e &
1 > } } X 5\0p° i X
X7 Yo = X Xo €— X Xo <— X
A Figure 2.2.7 A Figure 2.2.8

There are other less obvious circum-
stances under which a function may fail
to be differentiable. (See Exercise 49,
for example.)

Differentiability at xy can also be described informally in terms of the behavior of
the graph of f under increasingly stronger magnification at the point P (x¢, f(xo)) (Fig-
ure 2.2.9). If f is differentiable at x¢, then under sufficiently strong magnification at P the

Differentiable at x

A Figure 2.2.9

0

Not differentiable at Xo

Not differentiable at Xg

0
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0
y =X
A Figure 2.2.10

ey ) 1, x>0
y_f(x)_{—l,x<0

A Figure 2.2.11

A theorem that says “If statement A is
true, then statement B is true” is equiv-
alent to the theorem that says “If state-
ment B is not true, then statement A is
not true” The two theorems are called
contrapositive forms of one another.
Thus, Theorem 2.2.3 can be rewritten
in contrapositive form as “If a function
[ is not continuous at xo, then f is not
differentiable at x¢."

graph looks like a nonvertical line (the tangent line); if a corner point occurs at x,, then no
matter how great the magnification at P the corner persists and the graph never looks like
a nonvertical line; and if vertical tangency occurs at xg, then the graph of f looks like a
vertical line under sufficiently strong magnification at P.

» Example 6 The graphofy = |x|inFigure 2.2.10 has a corner at x = 0, which implies
that f(x) = |x| is not differentiable at x = 0.

(a) Prove that f(x) = |x]| is not differentiable at x = 0 by showing that the limit in Defi-
nition 2.2.2 does not exist at x = 0.

(b) Find a formula for f'(x).

Solution (a). From Formula (5) with xy = 0, the value of f7(0), if it were to exist, would
be given by

v o JO+R)—fO) - f(h)— fO) . |h|—1[0] . |}
FO=I T ST e Tl Ty ©
But
m_ 1, h>0
h o |-1, h<O
so that
o ol
Iim —=-1 and Ilm — =1
h—0- h h—0+ h

Since these one-sided limits are not equal, the two-sided limit in (5) does not exist, and
hence f is not differentiable at x = 0.

Solution (b). A formula for the derivative of f(x) = |x| can be obtained by writing |x| in
piecewise form and treating the cases x > 0 and x < 0 separately. If x > 0, then f(x) = x
and f'(x) = 1;if x < 0, then f(x) = —x and f’(x) = —1. Thus,

1, x>0

f/(x):{—l x <0

The graph of f’ is shown in Figure 2.2.11. Observe that f’ is not continuous at x = 0, so
this example shows that a function that is continuous everywhere may have a derivative
that fails to be continuous everywhere. <«

THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

We already know that functions are not differentiable at corner points and points of ver-
tical tangency. The next theorem shows that functions are not differentiable at points of
discontinuity. We will do this by proving that if f is differentiable at a point, then it must
be continuous at that point.

2.2.3 THEOREM Ifa function f is differentiable at x, then f is continuous at x.

PROOF We are given that f is differentiable at x, so it follows from (5) that f’(xo) exists

and is given by f(xo+h) — f(xo)
]

fuw=gg[ )
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To show that f is continuous at x,, we must show that lim,_, ., f(x) = f(xo) or, equiva-
fently Jim (/00 = fC)] =0
Expressing this in terms of the variable 7 = x — x(, we must prove that

Jim [f(xo +h) — f(xo)] =0

However, this can be proved using (7) as follows:

fxo+h) — f(xo) h]

lim [ (ko + ) = f(x0)] = lim [

h
— lim [f(onrh) - f(xo)] lim A
h—0 h h—0
=f(x)-0=0 m

WARNING

The relationship between continuity and differentiability was of great historical signif-
icance in the development of calculus. In the early nineteenth century mathematicians
believed that if a continuous function had many points of nondifferentiability, these points,
like the tips of a sawblade, would have to be separated from one another and joined by
smooth curve segments (Figure 2.2.12). This misconception was corrected by a series of
discoveries beginning in 1834. In that year a Bohemian priest, philosopher, and mathe-
matician named Bernhard Bolzano discovered a procedure for constructing a continuous
function that is not differentiable at any point. Later, in 1860, the great German mathemati-
cian Karl Weierstrass (biography on p. 102) produced the first formula for such a function.
The graphs of such functions are impossible to draw; it is as if the corners are so numerous
that any segment of the curve, when suitably enlarged, reveals more corners. The discovery
of these functions was important in that it made mathematicians distrustful of their geo-
metric intuition and more reliant on precise mathematical proof. Recently, such functions
have started to play a fundamental role in the study of geometric objects called fractals.
Fractals have revealed an order to natural phenomena that were previously dismissed as
random and chaotic.

The converse of Theorem 2.2.3 is false;
that is, a function may be continuous
at a point but not differentiable at that
point. This occurs, for example, at cor-
ner points of continuous functions. For
instance, f(x) = |x| is continuous at
x = 0 but not differentiable there (Ex-
ample 6).

» Figure 2.2.12 [

Bernhard Bolzano (1781-1848) Bolzano, the son of an
art dealer, was born in Prague, Bohemia (Czech Repub-
lic). He was educated at the University of Prague, and
eventually won enough mathematical fame to be recom-
mended for a mathematics chair there. However, Bolzano
became an ordained Roman Catholic priest, and in 1805

of war and militarism. His views so disenchanted Emperor Franz I
of Austria that the emperor pressed the Archbishop of Prague to have
Bolzano recant his statements. Bolzano refused and was then forced
to retire in 1824 on a small pension. Bolzano’s main contribution to
mathematics was philosophical. His work helped convince mathe-
maticians that sound mathematics must ultimately rest on rigorous

he was appointed to a chair of Philosophy at the University of
Prague. Bolzano was a man of great human compassion; he spoke
out for educational reform, he voiced the right of individual con-
science over government demands, and he lectured on the absurdity

proof rather than intuition. In addition to his work in mathematics,
Bolzano investigated problems concerning space, force, and wave
propagation.

[Image: http://en.wikipedia.org/wiki/ File: Bernard_Bolzano.jpg]
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Il DERIVATIVES AT THE ENDPOINTS OF AN INTERVAL

Slope = f/(a)

y=1(x)
Slope = f/(b)

|
|
|
b

|
|
\
\
|
|
|
a
A Figure 2.2.13

Later, the symbols dy and dx will be
given specific meanings. However, for
the time being do not regard dy/dx as
a ratio, but rather as a single symbol
denoting the derivative.

If a function f is defined on a closed interval [a, b] but not outside that interval, then f’
is not defined at the endpoints of the interval because derivatives are two-sided limits. To
deal with this we define left-hand derivatives and right-hand derivatives by

) x+h)— f(x , ) x+h)— f(x
Fr = tim LEEDZIO oy g S )
respectively. These are called one-sided derivatives. Geometrically, f’ (x) is the limit of
the slopes of the secant lines as x is approached from the left and f/ (x) is the limit of the
slopes of the secant lines as x is approached from the right. For a closed interval [a, b], we
will understand the derivative at the left endpoint to be f/ (a) and at the right endpoint to
be f’ (b) (Figure 2.2.13).

In general, we will say that f is differentiable on an interval of the form [a, b], [a, +%),
(=0, b], [a, b), or (a, b] if it is differentiable at all points inside the interval and the appro-
priate one-sided derivative exists at each included endpoint.

It can be proved that a function f is continuous from the left at those points where
the left-hand derivative exists and is continuous from the right at those points where the

right-hand derivative exists.

OTHER DERIVATIVE NOTATIONS

The process of finding a derivative is called differentiation. You can think of differentiation
as an operation on functions that associates a function f” with a function f. When the
independent variable is x, the differentiation operation is also commonly denoted by

d
') = T @1 or f'(x) = D[ f ()]

In the case where there is a dependent variable y = f(x), the derivative is also commonly
denoted by

d
fm=ﬂworﬂw=f
X

With the above notations, the value of the derivative at a point xy can be expressed as

d d
fow) = - 1f@)] P =DAafWI|_, fx) =y (0, fxo) =
X 0 dx

X=Xq X=X0

If a variable w changes from some initial value w to some final value w;, then the final
value minus the initial value is called an increment in w and is denoted by

Aw = w; — wy 8)

Increments can be positive or negative, depending on whether the final value is larger or
smaller than the initial value. The increment symbol in (8) should not be interpreted as a
product; rather, Aw should be regarded as a single symbol representing the change in the
value of w.
It is common to regard the variable £ in the derivative formula
Jx+h - fl)

S0 = Jim P ®

as an increment Ax in x and write (9) as

Sx + Ax) — f(x)
Ax

)= Jim (10)
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Moreover, if y = f(x), then the numerator in (10) can be regarded as the increment
Ay = f(x + Ax) — f(x) (11)
in which case

dy . Ay . flx+ Ax) — f(x)
— = lim — = lim
dx Ax—0 Ax Ax—0 Ax

12)

The geometric interpretations of Ax and Ay are shown in Figure 2.2.14.

Sometimes it is desirable to express derivatives in a form that does not use increments
at all. For example, if we let w = x + & in Formula (9), then w — x as h — 0, so we can
rewrite that formula as

Jw) — f(x)
w

— X

f'(x) = lim

w—>X

(13)

(Compare Figures 2.2.14 and 2.2.15.)

dy _ jim Ay 60 = lim f(w) - f(x)
dx ~ Ax—0 Ax () = wox T w—x
A Figure 2.2.14 A Figure 2.2.15

When letters other than x and y are used for the independent and dependent variables,
the derivative notations must be adjusted accordingly. Thus, for example, if s = f(¢) is the
position function for a particle in rectilinear motion, then the velocity function v(¢) in (4)
can be expressed as

d A t+ At) — f(¢
v(t) = Y _ gim 22— i fa+an - f (14)
dt  At—0 At At—0 At
VQUICK CHECK EXERCISES 2.2  (See page 155 for answers.)
1. The function f’(x) is defined by the formula 4. Which theorem guarantees us that if

Jo) = i —— L G0tk = fx)
2. (a) The derivative of f(x) = x2is ffxy=——. h—0 h

(b) The derivative of f(x) = /xis f/(x) =
3. Suppose that the line 2x + 3y = 5 is tangent to the graph

of y = f(x) at x = 1. The value of f(1)is______ and
the value of f/(1)is — .

exists, then lim f(x) = f(x0)?
X — X0
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EXERCISE SET 2.2 I Graphing utility

1. Use the graph of y = f(x) in the accompanying figure to
estimate the value of f'(1), f'(3), f'(5), and f(6).

y

NEVAN

P N W b OO

< Figure Ex-1

2. For the function graphed in the accompanying figure, arrange
the numbers 0, f'(—3), f(0), f'(2), and f’(4) in increasing
order.

5 A Y
Il KI\\O—J | IX
-5/ i 5
~5+ < Figure Ex-2

FOCUS ON CONCEPTS

3. (a) If you are given an equation for the tangent line at

the point (a, f(a)) onacurve y = f(x), how would
you go about finding f'(a)?

(b) Given that the tangent line to the graph of y = f(x)
at the point (2, 5) has the equation y = 3x — 1, find
f'@).

(c¢) For the function y = f(x) in part (b), what is the in-
stantaneous rate of change of y with respect to x at
x =27

4. Given that the tangent line to y = f(x) at the point (1, 2)
passes through the point (—1, —1), find f(1).

5. Sketch the graph of a function f for which f(0) = —1,
f'(0)=0, f'(x) <0if x < 0,and f'(x) > 0if x > 0.

6. Sketch the graph of a function f for which f(0) =0,
f'(0) =0,and f'(x) >0ifx <Oorx > 0.

7. Given that f(3) = —1 and f’(3) = 5, find an equation for
the tangent line to the graph of y = f(x) at x = 3.

8. Given that f(—2) = 3 and f'(—2) = —4, find an equation
for the tangent line to the graph of y = f(x) atx = —2.

9-14 Use Definition 2.2.1 to find f’(x), and then find the tan-
gent line to the graph of y = f(x) at x = a.

9. fx)=2x* a=1 10. f(x) =1/x% a=—1
11. f)=x> a=0 12. fx)=2x341; a=—-1
13. fx)=+/x+1;,a=28 4. fx)=V/2x+1;, a=4

15-20 Use Formula (12) to find dy/dx.

15 = ! 16 = ! 17 =x2
Ly = .y = 1 Ly=x X
18 =x* 19 = —1 20 = !
Y Y \/)_C Y Jx =1

21-22 Use Definition 2.2.1 (with appropriate change in nota-
tion) to obtain the derivative requested.

21. Find f'(t) if f(r) = 46> + 1.
22. Find dV/drif V = 37r3,

FOCUS ON CONCEPTS

23. Match the graphs of the functions shown in (a)—(f) with
the graphs of their derivatives in (A)—(F).

@ (b) (©

_/\_X

>
>

(d) (€) (f)

(A) (B) ©

(D) (E) (F)




24. Let f(x) = +/1 — x2. Use a geometric argument to find
f'2/2).

25-26 Sketch the graph of the derivative of the function

whose graph is shown.

25. (a) (b) (©
y y y
K 1 1

26. () (b) (©
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M 38. Let f(x) = sinx. Estimate f'(7r/4) by
(a) using a graphing utility to zoom in at an appropriate
point until the graph looks like a straight line, and then
estimating the slope
(b) using a calculating utility to estimate the limit in For-
mula (13) by making a table of values for a succession
of values of w approaching 7/4.

39-40 The function f whose graph is shown below has values
as given in the accompanying table.
y

3,

f(x) | 1.56 | 058 | 2.12 | 2.34 | 2.2

27-30 True-False Determine whether the statement is true or
false. Explain your answer.

27. If acurve y = f(x) has a horizontal tangent line at x = a,
then f’(a) is not defined.

28. If the tangent line to the graph of y = f(x) at x = —2 has
negative slope, then f'(—2) < 0.

29. If a function f is continuous at x = 0, then f is differen-
tiable at x = 0.

30. If a function f is differentiable at x = 0, then f is contin-
uous at x = 0.

31-32 The given limit represents f'(a) for some function f
and some number a. Find f(x) and a in each case.

JTF+FAx —1 2_9

3. @ Lim ATy gim M
Ax—0 Ax xn—>3x; —3
.ocos(m+h)+1 X' =1
2. @ lim ———— (b lim ——

33. Find dy/dx|c—,, given that y = 1 — x2.
34. Find dy/dx|,—_», given that y = (x + 2)/x.

[ 35. Find an equation for the line that is tangent to the curve

y = x> — 2x + 1 atthe point (0, 1), and use a graphing util-
ity to graph the curve and its tangent line on the same screen.

[ 36. Use a graphing utility to graph the following on the same

screen: the curve y = x?/4, the tangent line to this curve
at x = 1, and the secant line joining the points (0, 0) and
(2, 1) on this curve.

M 37. Let f(x) = 2*. Estimate f'(1) by

(a) using a graphing utility to zoom in at an appropriate
point until the graph looks like a straight line, and then
estimating the slope

(b) using a calculating utility to estimate the limit in For-
mula (13) by making a table of values for a succession
of values of w approaching 1.

39. (a) Use data from the table to calculate the difference quo-
tients
fA-JO  fQ-fO  f2) - fO)
3—1 7 2—-1 2-0
(b) Using the graph of y = f(x), indicate which difference
quotient in part (a) best approximates f’(1) and which
difference quotient gives the worst approximation to

’

.
40. Use data from the table to approximate the derivative values.
(@) f(0.5) (b) f(2.5)

FOCUS ON CONCEPTS

41. Suppose that the cost of drilling x feet for an oil well is

C = f(x) dollars.

(a) What are the units of f'(x)?

(b) In practical terms, what does f’(x) mean in this
case?

(c) What can you say about the sign of f'(x)?

(d) Estimate the cost of drilling an additional foot, start-
ing at a depth of 300 ft, given that f/(300) = 1000.

42. A paint manufacturing company estimates that it can
sell g = f(p) gallons of paint at a price of p dollars per
gallon.

(a) What are the units of dg/dp?

(b) In practical terms, what does dg/dp mean in this
case?

(c) What can you say about the sign of dg/dp?

(d) Given that dg/dp|p:10 = —100, what can you say
about the effect of increasing the price from $10 per
gallon to $11 per gallon?

43. It is a fact that when a flexible rope is wrapped around
a rough cylinder, a small force of magnitude Fj at one
end can resist a large force of magnitude F at the other
end. The size of F depends on the angle 6 through
which the rope is wrapped around the cylinder (see the
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accompanying figure). The figure shows the graph of F'

(in pounds) versus 6 (in radians), where F is the mag-

nitude of the force that can be resisted by a force with

magnitude Fy = 10 1b for a certain rope and cylinder.

(a) Estimate the values of F and dF /d6 when the angle
6 = 10 radians.

(b) It can be shown that the force F satisfies the equa-
tion dF/d® = uF, where the constant y is called
the coefficient of friction. Use the results in part (a)
to estimate the value of .

Force F (Ib)
w
3
T

0 [ 7 T S B
0 2 4 6 8 10 12 14

Angle 6 (rad)

A Figure Ex-43

44. The accompanying figure shows the velocity versus time
curve for a rocket in outer space where the only signif-
icant force on the rocket is from its engines. It can be
shown that the mass M (¢) (in slugs) of the rocket at time
t seconds satisfies the equation

M) = L
T dv/dt

where T is the thrust (in 1b) of the rocket’s engines and
v is the velocity (in ft/s) of the rocket. The thrust of
the first stage of a Saturn V rocketis T = 7,680,982 1b.
Use this value of T and the line segment in the figure to
estimate the mass of the rocket at time r = 100.

20,000
15,000
10,000

5,000

Velocity v (ft/s)

20 40 60 80 100 120 140
Time t (s)

< Figure Ex-44

45. According to Newton’s Law of Cooling, the rate of
change of an object’s temperature is proportional to the
difference between the temperature of the object and
that of the surrounding medium. The accompanying
figure shows the graph of the temperature 7 (in degrees
Fahrenheit) versus time ¢ (in minutes) for a cup of cof-
fee, initially with a temperature of 200°F, that is allowed
to cool in a room with a constant temperature of 75°F.
(a) Estimate T and dT/dt when t = 10 min.

(b) Newton’s Law of Cooling can be expressed as
dT
— =k(T — Tt
I ( 0)

where k is the constant of proportionality and 7y is
the temperature (assumed constant) of the surround-
ing medium. Use the results in part (a) to estimate
the value of k.

200
150

100

50

Temperature T (°F)

10 20 30 40 50 60

Time t (min) < Figure Ex-45

46.

47.

48.

49.

50.

FOCUS ON CONCEPTS

Show that f(x) is continuous but not differentiable at the
indicated point. Sketch the graph of f.

@ fx)=x, x=0
) f(x)=v(x—22 x=2
Show that

x2+1,
=13,

x <1
x>1

is continuous and differentiable at x = 1. Sketch the graph

of f.

Show that
X242, x<1
f(x)_{x—}—Z, x>1
is continuous but not differentiable at x = 1. Sketch the
graph of f.
Show that
_ fxsin(1/x), x#0
f@) = {0, i

is continuous but not differentiable at x = 0. Sketch the
graph of f near x = 0. (See Figure 1.6.6 and the remark
following Example 5 in Section 1.6.)

Show that

xZsin(1/x),

oo =13

is continuous and differentiable at x = 0. Sketch the graph
of f near x = 0.

x#0
x=0

51. Suppose that a function f is differentiable at x( and that

f'(x0) > 0. Prove that there exists an open interval con-
taining x, such thatif x; and x, are any two points in this
interval with x; < xo < x, then f(x;) < f(xo) < f(x2).



52.

53.

Suppose that a function f is differentiable at xy and de-
fine g(x) = f(mx + b), where m and b are constants.
Prove that if x; is a point at which mx; 4+ b = x, then
g(x) is differentiable at x; and g’'(x;) = mf'(xo).
Suppose that a function f is differentiable at x = 0 with
f(0) = f(0) =0, and let y = mx, m # 0, denote any
line of nonzero slope through the origin.
(a) Prove that there exists an open interval contain-
ing O such that for all nonzero x in this interval

2.3 Introduction to Techniques of Differentiation

of f at the origin is the best linear approximation
to f at that point.

54. Suppose that f is differentiable at xo. Modify the ar-

gument of Exercise 53 to prove that the tangent line
to the graph of f at the point P(xg, f(xg)) provides
the best linear approximation to f at P. [Hint: Sup-
pose that y = f(xg) + m(x — xo) is any line through
P(xo, f(xp)) with slope m # f'(x). Apply Definition
1.4.1to (5) withx =xp+hand e = %|f/(x0) —ml.]

| f(x)| < |4mx|. [Hint: Let € = }|m| and apply
Definition 1.4.1 to (5) with xo = 0.]

(b) Conclude from part (a) and the triangle inequality
that there exists an open interval containing O such
that | f(x)| < | f(x) — mx]| for all x in this interval.

(c) Explain why the result obtained in part (b) may be
interpreted to mean that the tangent line to the graph

55. Writing Write a paragraph that explains what it means for a
function to be differentiable. Include examples of functions
that are not differentiable as well as examples of functions
that are differentiable.

56. Writing Explain the relationship between continuity and
differentiability.

l/ QUICK CHECK ANSWERS 2.2

Jx+h) — fx) b .2
1. p 2.2 ®) = 31—

4. Theorem 2.2.3: If f is differentiable at x(, then f is continuous at x;.

m INTRODUCTION TO TECHNIQUES OF DIFFERENTIATION

In the last section we defined the derivative of a function f as a limit, and we used that
limit to calculate a few simple derivatives. In this section we will develop some important
theorems that will enable us to calculate derivatives more efficiently.

Il DERIVATIVE OF A CONSTANT
The simplest kind of function is a constant function f(x) = c¢. Since the graph of f is
y=c a horizontal line of slope 0, the tangent line to the graph of f has slope O for every x;

? and hence we can see geometrically that f’(x) = 0 (Figure 2.3.1). We can also see this
} algebraically since

|

| X S fGHD - @) e—c

: £ = fim = = fim, = = fim0 =0

The tangent line to the graph of
f(X) = ¢ has slope O for all x.

Thus, we have established the following result.

A Figure 2.3.1 .. . . .. .
2.3.1 THEOREM The derivative of a constant function is 0; that is, if ¢ is any real

number, then d
—[c] =0 (D
dx

» Example 1

d d d
=0, —[-31=0, —[r]=0, —[—ﬁ]=o<
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Il DERIVATIVES OF POWER FUNCTIONS

\
\
\
1
X

The tangent line to the graph of
f(x) = x has slope 1 for all x.

A Figure 2.3.2

Verify that Formulas (2), (3), and (4)
are the special cases of (5) in which
n=1,2and 3.

The binomial formula can be found on
the front endpaper of the text. Replac-
ing y by & in this formula yields the
identity used in the proof of Theorem
2.3.2.

The simplest power functionis f(x) = x. Since the graph of f is aline of slope 1, it follows
from Example 3 of Section 2.2 that f’(x) = 1 for all x (Figure 2.3.2). In other words,

d
=1 @)

Example 1 of Section 2.2 shows that the power function f(x) = x? has derivative f'(x) =
2x. From Example 2 in that section one can infer that the power function f(x) = x> has
derivative f’(x) = 3x2. That is,
d. d . 3 2
—[x“]=2x and —[x°]=3x (3-4)
dx dx
These results are special cases of the following more general result.

2.3.2 'THEOREM (The Power Rule) If n is a positive integer, then

d n n—1
E[x I=nx (%)

PROOF Let f(x) = x". Thus, from the definition of a derivative and the binomial formula
for expanding the expression (x + /)", we obtain

d oo fEHR) = f) () —
ax 1= £ = fim, i =
-1
|:x” +nx""h 4+ %x"‘zh2 4 axh" 4 h"] —x"
= lim .
h—0 h

—1
nx"'h 4+ n(n—‘)x"_zh2 44 axh" 40"
— lim 2!
h—0 h

b

nn —
= lim |:nx”1 + (—
h—0

2!
=nx"'40+--+04+0

=nx""! m

xn2h+_._+nxhn2+hnli|

» Example 2

d d d
— [ =4x, —[X°1=5x% —['?1=12¢" «
dx dx dt

Although our proof of the power rule in Formula (5) applies only to positive integer
powers of x, it is not difficult to show that the same formula holds for all integer powers of
x (Exercise 82). Also, we saw in Example 4 of Section 2.2 that

d 1
E[ﬁ] REW (6)

which can be expressed as

LN Loz Lana

dx ) 2
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Thus, Formula (5) is valid for n = %, as well. In fact, it can be shown that this formula
holds for any real exponent. We state this more general result for our use now, although we
won’t be prepared to prove it until Chapter 3.

2.3.3 THEOREM (Extended Power Rule) If r is any real number, then

d
1= rx"! (7

In words, to differentiate a power function, decrease the constant exponent by one and
multiply the resulting power function by the original exponent.

» Example 3

E[x”] = x™ !

d [1 _ d —17 _ —1-1 _ -2 _ 1

a[;]—a“ I=CEw ==
d 1 d 0 _101 100
aw [w—] =gt =0T =
i[x4/5] _ ‘_lx(4/5)—1 _ ‘_Lx—l/s

dx 5 5

d 3 d a1 o 1

dx[ﬁ] =3 e

Il DERIVATIVE OF A CONSTANT TIMES A FUNCTION

2.3.4 THEOREM (Constant Multiple Rule) If f is differentiable at x and c is any real

Formula (8) can also be expressed in number, then cf is also differentiable at x and

function notation as

d d
(cf) =cf’ E[cf(x)] = ca[f(x)] 8)
PROOF d f( n h) f( )
. cl(x —CcJ (X
g[Cf )] = hll_)mo 5
i [f(x +h) - f(X)}
= mcaec|——
h—0 h
= e Jim JOEI 2SO o r e

= C%[f(X)] u
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In words, a constant factor can be moved through a derivative sign.

» Example 4 d

d
E[4x8] = 4E[x8] = 4[8x"] = 32x’

d 12 d 12 11
—[—x?] = (-)—[x"?] = -12
dx[ x = )dx[x ] X

d rm d _ ) T
E[;]:na[x J=m(—x?) =5 <

H DERIVATIVES OF SUMS AND DIFFERENCES

2.3.5 THEOREM (Sum and Difference Rules) If f and g are differentiable at x, then so
are f +gand f — g and

Formulas (9) and (10) can also be ex-

ressed as d d d
pressed —[f(x) + g(0)] = —[f(X)] + —[gx)] )

f+8) =f+¢ dx dx dx
(f-9'=f-¢ d _ d d 10
L) ~ ()] = —[f0)] = ——[g(0)] (10)

PROOF Formula (9) can be proved as follows:
[f(x+h)+gx+m)]—[f(x)+gx)]

d
/(@) + g(0)] = lim

h
— i L@ = fOT+ [gx + 1) — 8]
T >0 h
— lim Sx+h)— f(x) + lim gx+h) —gl) The limit of a sum is
h—=0 h h—0 h the sum of the limits.

-2 (x) < (x)
= @I+ —lg (]

Formula (10) can be proved in a similar manner or, alternatively, by writing f(x) — g(x)
as f(x) + (—1)g(x) and then applying Formulas (8) and (9). ®

In words, the derivative of a sum equals the sum of the derivatives, and the derivative of
a difference equals the difference of the derivatives.

» Example 5
d d d
—2x0 4+ x7 = — 2084+ —[x 1= 1207 + (=9)x 10 = 1245 —9x 710
dx dx

dx
d |:ﬁ—2x

d
4[5 e

d d 1 1
ZE[I]_E[Zﬁ]ZO_2<m) Z—W See Formula (6). <
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A

y=x3-3x+4

Y <

-342 -1
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A Figure 2.3.3
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=

A Figure 2.3.4
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Although Formulas (9) and (10) are stated for sums and differences of two functions,
they can be extended to any finite number of functions. For example, by grouping and
applying Formula (9) twice we obtain

(f+g+h) =[(f+8)+h' =+ +h=f+g+I

As illustrated in the following example, the constant multiple rule together with the ex-
tended versions of the sum and difference rules can be used to differentiate any polynomial.

» Example 6 Find dy/dx if y =3x8 —2x° +6x + 1.

Solution. d
y d 8 5
— = —[3x° -2 6 1
dx dx[ * A+ Ox 4 1
d

=—3 8]—i[z 5]+i[6 ]+i[1]
T dx o dx . dx N dx

=24x7 — 10x* + 6 «

» Example7 Atwhatpoints, if any, does the graph of y = x* — 3x + 4 have a horizontal
tangent line?

Solution. Horizontal tangent lines have slope zero, so we must find those values of x for
which y’(x) = 0. Differentiating yields

l d 3 2
V()= —[x"—3x+4]=3x"-3
dx

Thus, horizontal tangent lines occur at those values of x for which 3x2 — 3 = 0, that is, if
x = —lorx = 1. The corresponding points on the curve y = x3 — 3x + 4 are (—1, 6) and
(1,2) (see Figure 2.3.3). «

» Example 8 Find the area of the triangle formed from the coordinate axes and the
tangent line to the curve y = 5x~! — %x at the point (5, 0).

Solution. Since the derivative of y with respect to x is

d 1 d 4Tl 1
"X)= — [5x "= x| = —[5x "] — — | =x| = —5x2— =
v dx[x sx} o T [5x] *Ts

the slope of the tangent line at the point (5, 0) is y'(5) = —%. Thus, the equation of the
tangent line at this point is

2 2
y—0=—§(x—5) or equivalently y=—§x+2

Since the y-intercept of this line is 2, the right triangle formed from the coordinate axes and
the tangent line has legs of length 5 and 2, so its area is %(5) (2) = 5 (Figure 2.3.4). «

HIGHER DERIVATIVES

The derivative f’ of a function f is itself a function and hence may have a derivative
of its own. If f’ is differentiable, then its derivative is denoted by f” and is called the
second derivative of f. As long as we have differentiability, we can continue the process
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of differentiating to obtain third, fourth, fifth, and even higher derivatives of f. These
successive derivatives are denoted by

o= =gt Y=g =0
If y = f(x), then successive derivatives can also be denoted by

y/’ y//’ y///’ y(4)’ y(S)’ .

Other common notations are

)
y = dx  dx o
,_dy _dfd _ &
y=dr_d [a [f(x)]] = U]
n __ d3y J— d d2 = d3
-4 [ﬁ [f(x)]} = )

These are called, in succession, the first derivative, the second derivative, the third deriva-
tive, and so forth. The number of times that f is differentiated is called the order of the
derivative. A general nth order derivative can be denoted by

dﬂy _ (n) _ drl
dx" FrE = dx"

Lf ()] (11)

and the value of a general nth order derivative at a specific point x = x( can be denoted by

dny (n) . dn
e [P0 = -2

[f(x)] (12)

=X0

» Example 9 If f(x) = 3x* — 2x3 + x? — 4x + 2, then
fl(x) =12x> —6x2 +2x — 4
f(x) =36x2 —12x +2
() = T2x — 12
[P =72
fOw =0

FO@W =0 (125 <

We will discuss the significance of second derivatives and those of higher order in later
sections.

“QUlCK CHECK EXERCISES 2.3  (See page 163 for answers.)

345 345
1. In each part, determine f'(x). ©) fix)= al ;_ d f(x)= %
@ fx)=+6 (b) f(x) = v6x . N
(©) fx) =6yx @ f(x) = Jox 3. The slope of the tangent line to the curve y = x~ +4x + 7
atx = 1is .

2. In parts (a)—(d), determine f'(x).
(a) f(x) — x3 4 5 (b) f(x) — xz(x3 + 5) 4. If f(x) = 3X3 — 3x2 +x + 1, then f”(.x) = .
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1-8 Find dy/dx.

1. y=4x7 2. y=-3x"7
3.y =3x%+2x+1 4.y:%(x4+7)
5.y=n 6. y=+2x+(1/2)
2
1
7. y=—1a7+2x-9) zz.y:x;L

9-16 Find f'(x).
9. f(x)=x3+ % 10. f(x) =/x+ !
X X
11 f(x) = =3x8 4+2x 12, f(x) =7x % —5x
| 48
13. f(x) =x°+ G 14. f(x) = \/;

15. f(x) = 3x* +1)?
16. f(x) =ax®> +bx>+cx+d (a,b,c,d constant)

17-18 Find y'(1).

3/2 2
17. y =5x2—3x +1 18.y:x +
19-20 Find dx/dt.
2 +1
19. x =1t —1¢ 20. x = +
3t

21-24 Find dy/dx|,=;.

21 y=14+x+ x>+ 3+ x4 +5°
T+x+x2+x3 +x* 4+ x° +x°
3
23. y=(1—x)1+x)1+x>A +xY

24, y = x4+ 2x12 4358 4 4x6

22. y =

25-26 Approximate f’(1) by considering the difference quo-
tient F+h) = f(1)
h

for values of & near 0, and then find the exact value of f'(1) by
differentiating.

25. f(x)=x>-3x+1 26. f(x) = %

] 27-28 Use a graphing utility to estimate the value of f'(1) by

zooming in on the graph of f, and then compare your estimate
to the exact value obtained by differentiating.

x24+1 x +2x3?

27. f(x) = =

28. f(x) =

29-32 Find the indicated derivative.
d dcC

29. —[161%] 30. —, where C = 27r
dt dr

d
32, — 2 ' +«]
da

33-36 True-False Determine whether the statement is true or
false. Explain your answer.

33. If f and g are differentiable at x = 2, then

31. V'(r), where V = 713

=f'(2)-8¢'®2

x=2

d
I [f(x) —8g(x)]
X

34. If f(x) isacubic polynomial, then f'(x) is a quadratic poly-
nomial.

35. If f/(2) = 5, then

=4f'(2)=20
x=2

d d
A+ Xl = ——[4f(x) +8]
X dx

x=2

36. If f(x) = x>(x* — x), then
') = %[xz] . %[}c4 —x]=2x@x>-1)

37. A spherical balloon is being inflated.

(a) Find a general formula for the instantaneous rate of
change of the volume V with respect to the radius r,
given that V = $7r°.

(b) Find the rate of change of V with respect to r at the
instant when the radius is r = 5.

6
38. Find - [M
dr | 2—2X

39. Find an equation of the tangent line to the graphof y = f(x)
atx = =3 if f(—=3) =2and f'(-3) =5.

40. Find an equation of the tangent line to the graphof y = f(x)
atx =2if f(2) = —-2and f'(2) = —1.

] (Ag is constant).

41-42 Find d*y/dx>.

41. (a) y=Tx> —5x> +x (b) y=12x>-2x+3

1
(© y= s (d) y = (5x2—=3)(7x> +x)
42, (a) y=4x"—5x3+2x (b)) y=3x+2
3x—2
©) y= 5 @ y=x'=52x+3)
X
43-44 Find y”.

43. (a) y=x+x° (b) y=1/x
(c) y=ax’>+bx+c (a,b,cconstant)

4. (a) y=5x> —4x +7 (b) y=3x"2+4x""+x
(¢) y=ax*+bx>+c (a,b, cconstant)

45. Find
(a) f’;’(Z), where f(x) =3x2 -2
(b) d—y , where y = 6x° — 4x?
dx?|,_,
d -3
() o [x~] -
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46. Find
(a) y”(0), where y = 4x* +2x> +3
® 2 6
—| ,wherey= —.
dx*|,_ Y=

47. Show that y = x3 + 3x + 1 satisfies y” + xy” — 2y’ = 0.

48. Show that if x # 0, then y = 1/x satisfies the equation

X3y +x2y —xy =0.

] 49-50 Use a graphing utility to make rough estimates of the

locations of all horizontal tangent lines, and then find their exact
locations by differentiating.

x> +9

49. y=%x3—%x2—|—2x 50. y =

FOCUS ON CONCEPTS

51. Find a function y = ax? + bx + ¢ whose graph has an
x-intercept of 1, a y-intercept of —2, and a tangent line
with a slope of —1 at the y-intercept.

52. Find k if the curve y = x% + k is tangent to the line
y =2x.

53. Find the x-coordinate of the point on the graph of y = x?
where the tangent line is parallel to the secant line that
cuts the curve at x = —1 and x = 2.

54. Find the x-coordinate of the point on the graph of
y = 4/x where the tangent line is parallel to the secant
line that cuts the curve at x = 1 and x = 4.

55. Find the coordinates of all points on the graph of
y = 1 — x? at which the tangent line passes through the
point (2, 0).

56. Show that any two tangent lines to the parabola y = ax?,
a # 0, intersect at a point that is on the vertical line
halfway between the points of tangency.

57. Suppose that L is the tangent line at x = xy to the graph of
the cubic equation y = ax> 4+ bx. Find the x-coordinate of
the point where L intersects the graph a second time.

58. Show that the segment of the tangent line to the graph of
y = 1/x that s cut off by the coordinate axes is bisected by
the point of tangency.

59. Show that the triangle that is formed by any tangent line to
the graph of y = 1/x, x > 0, and the coordinate axes has
an area of 2 square units.

60. Find conditions on a, b, ¢, and d so that the graph of the
polynomial f(x) = ax® + bx> + cx 4+ d has
(a) exactly two horizontal tangents
(b) exactly one horizontal tangent
(c) no horizontal tangents.

61. Newton’s Law of Universal Gravitation states that the mag-
nitude F of the force exerted by a point with mass M on a

point with mass m is
GmM
r2
where G is a constant and r is the distance between the bod-
ies. Assuming that the points are moving, find a formula for
the instantaneous rate of change of F with respect to r.

F =

62. In the temperature range between 0°C and 700°C the re-
sistance R [in ohms (£2)] of a certain platinum resistance
thermometer is given by

R =10+0.04124T — 1.779 x 107°T?
where T is the temperature in degrees Celsius. Where in
the interval from 0° C to 700° C is the resistance of the ther-
mometer most sensitive and least sensitive to temperature
changes? [Hint: Consider the size of dR/dT in the interval
0<T <700.]

[ 63-64 Use a graphing utility to make rough estimates of the in-

tervals on which f’(x) > 0, and then find those intervals exactly
by differentiating.

63. f(x) =x— % 64. f(x)=x>—3x

65-68 You are asked in these exercises to determine whether a
piecewise-defined function f is differentiable at a value x = xo,
where f is defined by different formulas on different sides of
Xo. You may use without proof the following result, which is
a consequence of the Mean-Value Theorem (discussed in Sec-
tion 4.8). Theorem. Let f be continuous at xo and suppose
that lim, _, ,, f'(x) exists. Then f is differentiable at xy, and
F/0x0) = lim, , f(x).
65. Show that ,
x+x+1, x<1
S = {3)6, x>1
is continuous at x = 1. Determine whether f is differen-
tiable at x = 1. If so, find the value of the derivative there.
Sketch the graph of f.

66. Let x2—16x, x<9

fx) = {\/;, x>9

Is f continuous at x = 9? Determine whether f is differ-
entiable at x = 9. If so, find the value of the derivative
there.

67. Let x2, x <1
f(-x)—{\/}’ > 1

Determine whether f is differentiable at x = 1. If so, find
the value of the derivative there.

68. Let x3—|—%, X <%
f(x)={32 |
FR Y=z

X =

Determine whether f is differentiable at
the value of the derivative there.

69. Find all points where f fails to be differentiable. Justify
your answer.

(@) flx)=13x=2]

1. 1If so, find

b) fx) = |x* —4|



70.

71.

72.

73.

74.

75.

In each part, compute f', f”, f”, and then state the formula
for £,

(@ f(x)=1/x (b) f(x) =1/x?

[Hint: The expression (—1)" has a value of 1 if n is even
and —1 if n is odd. Use this expression in your answer.]

(a) Prove
d?
[Cf(X)] = 3 [f(X)]

2 2 2
TS0+ 8] = TSI+ 51800
(b) Do the results in part (a) generahze to nth derivatives?
Justify your answer.

Let f(x) = x8 — 2x + 3; find

f'(w) — f'(2)
w—2
(a) Find f™(x)if f(x) =x",n=1,2,3,....
(b) Find f™(x) if f(x) = x* and n > k, where k is a pos-
itive integer.
(c) Find f™ (x) if
f&x) = ap+aix +axx® + -+ a,x"
(a) Prove: If f”(x) exists for each x in (a, b), then both f
and f’ are continuous on (a, b).
(b) What can be said about the continuity of f and its
derivatives if £ (x) exists for each x in (a, b)?
Let f(x) = (mx + b)", where m and b are constants and n
is an integer. Use the result of Exercise 52 in Section 2.2 to
prove that f'(x) = nm(mx + b)"~L.

lim

w—2

l/ QUICK CHECK ANSWERS 2.3
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76-77 Verify the result of Exercise 75 for f(x).

76.

fx) = (2x +3)? 77. f(x) = 3x —1)°

78-81 Use the result of Exercise 75 to compute the derivative
of the given function f(x).

78.

79.

80.

81.
82.

fx) = T_1

. 3
TR

X
fx) = T
2x2 4+ 4x +3

fo = x2+2x+1
The purpose of this exercise is to extend the power rule

(Theorem 2.3.2) to any integer exponent. Let f(x) = x",
where n is any integer. If n > 0, then f'(x) = nx"~' by
Theorem 2.3.2.

(a) Show that the conclusion of Theorem 2.3.2 holds in the

casen = 0.
(b) Suppose that n < 0 and set m = —n so that
fO)=x"=x""= L
=x"= =

Use Definition 2.2.1 and Theorem 2.3.2 to show that

dril 1
B e B
dx | xm x2m

and conclude that f'(x) = nx""L.

L (@ 0 (b) V6 (¢) 3/v/x (d) v6/(2/x)

2. (a) 3x% (b) 5x* +10x (¢) %xz d 1—10x"3

m THE PRODUCT AND QUOTIENT RULES

3.6 4.18x—6

In this section we will develop techniques for differentiating products and quotients of
Sfunctions whose derivatives are known.

Il DERIVATIVE OF A PRODUCT
You might be tempted to conjecture that the derivative of a product of two functions is
the product of their derivatives.

Consider the functions

fx)=x

The product of their derivatives is

However, a simple example will show this to be false.

and g(x) = x2

fl(x)g (x) = (1)(2x) =2x
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but their product is £(x) = f(x)g(x) = x3, so the derivative of the product is
W (x) = 3x*

Thus, the derivative of the product is not equal to the product of the derivatives. The correct
relationship, which is credited to Leibniz, is given by the following theorem.

2.4.1 THEOREM (The Product Rule) If f and g are differentiable at x, then so is the
product f - g, and

d d d
Formula (1) can also be expressed as d—[f(x)g(x)] = f(x)—[gx)]+ gx)—I[f(x)] (1)
X dx dx
(f-8y=f-¢&+g f

PROOF Whereas the proofs of the derivative rules in the last section were straightfor-
ward applications of the derivative definition, a key step in this proof involves adding and
subtracting the quantity f(x + h)g(x) to the numerator in the derivative definition. This

yields
d o Jxth)-g(x+h)— f(x) - g(x)
E[f(x)g(x)] —}}I_{HO P
- lim S +hgx+h) — f(x +h)gx)+ fx +h)gx) — f(x)g(x)
h—0 h
— lim [f(x+h)-g(x+h)_g(x) +g(x) - f(x+h)—f(x)}
h—0 h h
=g%f(x+h).2%w+}ﬁnog(x).}}%w

d d
[ Jim £ 0+ m)] g + | Jim ()| S-[f @]

d d
= f(x)d—[g(X)] +g(x)—[f(0)]
X dx

[Note: In the last step f(x + h)— f(x) as h— 0 because f is continuous at x by Theo-
rem 2.2.3. Also, g(x) — g(x) as h — 0 because g(x) does not involve /& and hence is treated
as constant for the limit.] m

In words, the derivative of a product of two functions is the first function times the
derivative of the second plus the second function times the derivative of the first.

» Example 1 Find dy/dx if y = (4x* — 1)(7x> + x).

Solution. There are two methods that can be used to find dy/dx. We can either use the
product rule or we can multiply out the factors in y and then differentiate. We will give
both methods.



2.4 The Product and Quotient Rules 165

Method 1. (Using the Product Rule)

dy _d o 3
I —dx[(4x D(7x7 4 x)]

= (4x° —1) [7x +x]+ (73 +x) [4x —1]

= 4x? = DQRIx>+ 1) + (7x* + x)(8x) = 140x* —9x> — 1

Method 2. (Multiplying First)
y=@x>—=1D(Tx*+x) =28x7 —3x> —x
Thus,
dy

d
= d_[zng —3x3 —x]=140x* —9x* — 1
X X

which agrees with the result obtained using the product rule. <«

» Example 2 Find ds/dt if s = (1 +1)+/1.
Solution. Applying the product rule yields

ds d
- = L+ V1]

d d
= (1+r>a[~ft]+ﬁz[1+t]

1+t 1+ 3¢
+i=
N 23/t

Il DERIVATIVE OF A QUOTIENT
Just as the derivative of a product is not generally the product of the derivatives, so the
derivative of a quotient is not generally the quotient of the derivatives. The correct relation-
ship is given by the following theorem.

2.4.2 THEOREM (The Quotient Rule) If f and g are both differentiable at x and if
g(x) # 0, then f/g is differentiable at x and

Formula (2) can also be expressed as i [ Fx) i| g(x) [f(x)] — f(x) = [g (x)] o

(L) =Lt 2@ PO

PROOF
fa+h)  fe)
A g+ g _ S+ g@) = () gl +h)
g0 ] T im0 h i hog(x) g +h)
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Sometimes it is better to simplify a
function first than to apply the quo-
tient rule immediately. For example, it
is easier to differentiate

x3/2 +x

fx) = N

by rewriting it as
f0) =x+x

as opposed to using the quotient rule.

[-2.5, 2.5] x [, 1]
xScl = 1,yScl = 1

x2—-1

x*+1

A Figure 2.4.1

Adding and subtracting f(x) - g(x) in the numerator yields
_i[ﬁﬁ}zhmf@+h%mm—f@%ﬂﬂ—f@%ﬂx+m+f@%ﬂm

dx | g(x) h—0 h-gx)-gx+h)
%uyf“+2_ﬂ“]—Duyg“+2_““]
= lim
h—0 gx)-glx+h)
. . +h) — . ) +h) —
_ im0 im PR — i ) - ST
}}1_)mog(x) 'hll_)mog(x + h)
[1im 0] 17001~ [Jim 0] - ()
_ haOg dx h—0 dx g
}}Lmog(x) . }}%g(x +h)
d d
B g(X)a[f(X)] - f(X)a[g(X)]
B [g ()T’
[See the note at the end of the proof of Theorem 2.4.1 for an explanation of the last step.]

In words, the derivative of a quotient of two functions is the denominator times the
derivative of the numerator minus the numerator times the derivative of the denominator,
all divided by the denominator squared.

3 42x? -1

» Example 3 Find y'(x) fory = T3
X

Solution. Applying the quotient rule yields

d 3 2 3 2 d
dy _d |:x3+2x2—1]=(x+5)a[x +2x° = 1] — (x” +2x —l)a[x—i-S]

dx  dx x+5 (x +5)2
(4 5Gx+4x) — (2 + 207 - 1)(D)
(x 4 5)?
(B +19x2 420x) — (° +2x7 — 1)
(x +5)?
_ 2x3 + 17x2 +20x + 1
(x +5)?
— x2—1
» Example 4 Let f(x) = T

(a) Graph y = f(x), and use your graph to make rough estimates of the locations of all
horizontal tangent lines.

(b) By differentiating, find the exact locations of the horizontal tangent lines.

Solution (a). 1In Figure 2.4.1 we have shown the graph of the equation y = f(x) in the
window [—2.5,2.5] x [—1, 1]. This graph suggests that horizontal tangent lines occur at
x=0,x~1.5and x =~ —1.5.
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Solution (b). To find the exact locations of the horizontal tangent lines, we must find the
points where dy/dx = 0. We start by finding dy/dx:

2 (x4+1)i[x2—1]—(x2—1)i[x4+1]
d_)’:i x-—1 _ dx dx
dx dx

x4l (x4 +1)2
_ (x ! + 1) (2)6 ) — (x - 1) (4x 3) The differentiation is complete.
- (x4 + 1)2 The rest is simplification.

—2x° 4 4x3 + 2x 2x(x* =222 - 1)
= x*+1)2 T e
Now we will set dy/dx = 0 and solve for x. We obtain
2x(x* —=2x2 = 1)
GEN
The solutions of this equation are the values of x for which the numerator is 0, that is,

2x(xt=2x2=1) =0

The first factor yields the solution x = 0. Other solutions can be found by solving the
equation Y22 1=0

This can be treated as a quadratic equation in x? and solved by the quadratic formula. This
yields 24+ /8

x? = 2‘/_ =1+v2
The minus sign yields imaginary values of x, which we ignore since they are not relevant
to the problem. The plus sign yields the solutions

Derive the following rule for differenti-
ating a reciprocal:

x=+/1++2
1y g
(g) = 2 In summary, horizontal tangent lines occur at
Use it to find the derivative of / /
se it to find the erlvaltlveo x:O, X = 1+ﬁ%1.55’ and ¥ = — 1+«/§%—1.55
=21 which is consistent with the rough estimates that we obtained graphically in part (a). <«

Il SUMMARY OF DIFFERENTIATION RULES
The following table summarizes the differentiation rules that we have encountered thus far.

Table 2.4.1
RULES FOR DIFFERENTIATION
direg— b gy ,_ , , 1y_ ¢
=0 (f+gy=f+g (f-gy=fg+g-f (@)_—?
L e (FY_Q = d
(cfy=cf (f-gr=f-g (@)_T 9y = e

VQUICK CHECK EXERCISES 2.4  (See page 169 for answers.)

L@ Lol =— o) i[ /) }:_ 2. Find F'(1) given that f(1) = —1, f'(1) = 2, g(1) = 3, and
dx dx [ x2 41

d [x2+1 g'(h = —1.
© _[ ]=_ @) F) =2f(x) —3g(x) (b) F(x) = [fx)P
dx | f(x) © F(x) = f(x)g(x) d) F(x) = f(x)/g(x)
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EXERCISE SET 2.4 ~ Graphing Utility

1-4 Compute the derivative of the given function f(x) by (a)
multiplying and then differentiating and (b) using the product
rule. Verify that (a) and (b) yield the same result.

L f)=x+D2x -1 2. f(x) =Gx>=DE2+2)
3. f0) =@+ DEI-1)
4. fO)=x+DE>=x+1)

5-20 Find f’'(x).

5. f(x)=(@Bx*+6)(2x — )
6. f(x) =2 —x—=3x)T+x)
7. fx) =@ +7x2=8)2x 3 +x7%
8. f(x)= (l + iz) Gx? +27)
X X
9. f(x) =(x —2)(x*+2x +4)
10. f(x) = (x2 +x)(x? —x)
3x +4 -2
11. f(x) = e 12. f(x) = 7“”“
x2 2x2 45
13 f() =", 14, () = 2—
2+ D -1
15, f0n) = ———>—— 3
X
16. f(x) = 2V/x+1) ( +3x>

17. f(x)=Qx+1) (1 + ;> x347)

18. f(x) =x (2 +2x)4 —3x0)2x° + 1)

19. f(x)=(x"+2x—3)> 20, f(x) = >+ 1D*
21-24 Find dy/dx|;—;.
2x — 1 4x + 1
21. = 22, =
Y x+3 Y x2 -5

23. y= (3 Xt )( =S4 24.y:(2x7—x2)<%)

[ 25-26 Use a graphing utility to estimate the value of f’(1) by

zooming in on the graph of f, and then compare your estimate
to the exact value obtained by differentiating.

| 2. f(x) = §+i

27. Find g’(4) given that f(4) =3 and f'(4) = .
@ &) = VES() by g = L2 f( B

28. Find g’(3) given that f(3) = —2 and f'(3) = 4.
@ @) =3 —5f) () g) = 2;(;1

29. Inparts (a)—(d), F(x) is expressed in terms of f(x) and g(x).
Find F'(2) given that f(2) = —1, f'(2) = 4, g(2) = 1, and
g2 =-

(@) F(x)=5f(x)+2g(x) (b) F(x)= f(x)—3g(x)
(©) F(x) = f(x)g(x) (d) F(x) = f(x)/g(x)
30. Find F'(x) given that f(r) = 10, f'(n) = —1, g(w) = —
and g'(m) = 2.
@ F(x)=6f(x)—5g(x) (b) F(x)=x(f(x)+gx))
Jx)
(©) F(x)=2f(x)gx) d F(x)= yppe,

31-36 Find all values of x at which the tangent line to the given
curve satisfies the stated property.

21 241
3. y= xi; horizontal 32. y = A ; horizontal
x+2 x—1
2
1
33. y= %; parallel to the line y = x
x+3 . .
4. y= m; perpendicular to the line y = x
1
35. y= m; passes through the origin
2x +5
36. y = ;_:_2 ; y-intercept 2

FOCUS ON CONCEPTS

37. (a) What should it mean to say that two curves intersect
at right angles?
(b) Show that the curves y = 1/x and y = 1/(2 — x)
intersect at right angles.
38. Find all values of a such that the curves y = a/(x — 1)
and y = x> — 2x + 1 intersect at right angles.
39. Find a general formula for F”(x) if F(x) = xf(x) and
f and f' are differentiable at x.
40. Suppose that the function f is differentiable everywhere
and F(x) = xf(x).
(a) Express F"’(x) in terms of x and derivatives of f.
(b) For n > 2, conjecture a formula for F o (x).

41. A manufacturer of athletic footwear finds that the sales of
their ZipStride brand running shoes is a function f(p) of the
selling price p (in dollars) for a pair of shoes. Suppose that
f(120) = 9000 pairs of shoes and f'(120) = —60 pairs of
shoes per dollar. The revenue that the manufacturer will
receive for selling f(p) pairs of shoes at p dollars per pair
is R(p) = p - f(p). Find R’(120). What impact would a
small increase in price have on the manufacturer’s revenue?

42. Solve the problem in Exercise 41 under the assumption that
f(120) = 9000 and f'(120) = —80.

43. Use the quotient rule (Theorem 2.4.2) to derive the for-
mula for the derivative of f(x) = x™", where n is a positive
integer.
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VQUICK CHECK ANSWERS 2.4

L (@) x*f'(x) +2xf(x) (b)

(o + D f(x) = 2xf(x) 2xf(x) — (> + D f(x)

(©

2. (@) 7 (b) =4 (©) 7 (d) 3

(x? +1)? [f(x)?]

m DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Formulas (1) and (2) and the derivation
of Formulas (3) and (4) are only valid if
h and x are in radians. See Exercise 49
for how Formulas (3) and (4) change
when x is measured in degrees.

The main objective of this section is to obtain formulas for the derivatives of the six basic
trigonometric functions. If needed, you will find a review of trigonometric functions in
Appendix B.

We will assume in this section that the variable x in the trigonometric functions sin x, cos x,
tan x, cot x, sec x, and csc x is measured in radians. Also, we will need the limits in Theorem
1.6.5, but restated as follows using 4 rather than x as the variable:

sin h 1 —cosh

}}15%) A =1 and f}lgloT_O (1-2)

Let us start with the problem of differentiating f(x) = sinx. Using the definition of the
derivative we obtain

Jx+h - fx)

fx) = lim

h
sin(x + h) — sinx
h—0 h
sin x cos h + cos x sin i — sin x
= l1im By the addition formula for sine
h—0 h

. |: (cosh—l) (sinh)]
= lim [sinx | ———— ) + cosx
h—0 h h

. sinh i I —cosh
= lim |cosx —sSmx { ——— Algebraic reorganization
h—0 h h

. . sinh . . . 1—cosh
= lim cosx - lim —— — lim sinx - lim ——
h—0 h—0 h h—0 h—0 h
= ( lim cos x) (1) — ( lim sin x) 0) Formulas (1) and (2)
h—0 h—0

cos x does not involve the variable / and hence

= lim cos x = cosx ) L .
h—0 is treated as a constant in the limit computation.

Thus, we have shown that
d
—[sinx] = cos x 3)
dx

In the exercises we will ask you to use the same method to derive the following formula
for the derivative of cos x:

d
E[COS x] = —sinx @)
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Since Formulas (3) and (4) are valid
only if x is in radians, the same is true
for Formulas (5)-(8).

When finding the value of a derivative
at a specific point x = xp, it is impor-
tant to substitute xo after the deriva-
tive is obtained. Thus, in Example 3 we
made the substitution x = 7r/4 after
f” was calculated. What would have
happened had we incorrectly substi-
tuted x = /4 into f’(x) before cal-
culating f"?

» Example 1 Find dy/dx if y = x sinx.

Solution. Using Formula (3) and the product rule we obtain

DY _ 4 | sina]
dx_dxx *

d[' ]+ si d[]
= x—[sin sin x —
x—[sinx x ol

= xcosx +sinx <

. . sin x
» Example 2 Finddy/dxify = ———.
14 cosx

Solution. Using the quotient rule together with Formulas (3) and (4) we obtain

d d
d_y _ (14 cosx) - E[sinx] —sinx - —x[l + cos x]
dx (1 + cos x)?
(I +cosx)(cosx) — (sinx)(—sinx)
B (1 + cos x)?
_cosxtcos’x +sin°x  cosx+1 1
(1 4 cos x)2 T (14cosx)?2 14cosx

The derivatives of the remaining trigonometric functions are
d > d
—[tan x] = sec” x —[sec x] = sec x tan x (5-6)
dx dx

d 2 d
—[cotx] = —csc” x —[cscx] = —cscx cotx (7-8)
dx dx

These can all be obtained using the definition of the derivative, but it is easier to use Formulas
(3) and (4) and apply the quotient rule to the relationships
i 0S X 1 1

sin x C
tan x = , Cotx = — , Secx = , CSCXx = —
COS X sin x COS X sin x

For example,

d . . d
d " ] d Tsinx COS X - E[sm x] —sinx - E[COS x]
—|tan x| = — =
dx dx | cosx cos? x
cosx -cosx —sinx - (—sinx)  cos?x + sin® x 1 2
= 2 = 2 = ) = SeC™ Xx
Ccos” x COS* X COS* X

» Example 3 Find £/ (/4) if f(x) = secx.

f'(x) = secxtanx

d d
secx - —[tanx] 4 tanx - —[sec x]
dx dx

J"(x)

secx - seczx + tan x - sec x tan x

= sec x + secx tan? x
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In Example 5, the top of the mass
has its maximum speed when it passes
through its rest position. Why? What is
that maximum speed?
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Thus,
f(/4) = sec®(w/4) + sec(r/4) tan® (;/4)

=23+ (V2)(1)? =3V2 «

» Example 4 On a sunny day, a 50 ft flagpole casts a shadow that changes with the
angle of elevation of the Sun. Let s be the length of the shadow and 6 the angle of elevation
of the Sun (Figure 2.5.1). Find the rate at which the length of the shadow is changing with
respect to & when § = 45°. Express your answer in units of feet/degree.

Solution. The variables s and 0 are related by tan & = 50/s or, equivalently,
s = 50cot0 O]

If 6 is measured in radians, then Formula (7) is applicable, which yields

d
& —50csc? 0
do
which is the rate of change of shadow length with respect to the elevation angle 6 in units
of feet/radian. When 6 = 45° (or equivalently & = 7/4 radians), we obtain
ds

— = —50csc?(r/4) = —100 feet/radian
de O=m/4
Converting radians (rad) to degrees (deg) yields

ft d 5 ft
Lo rnd 2o a7 ft/deg
rad 180 deg 9 deg

Thus, when 6 = 45°, the shadow length is decreasing (because of the minus sign) at an
approximate rate of 1.75 ft/deg increase in the angle of elevation. <

» Example 5 Asillustrated in Figure 2.5.2, suppose that a spring with an attached mass
is stretched 3 cm beyond its rest position and released at time r = 0. Assuming that the
position function of the top of the attached mass is

s = —3cost (10)

where s is in centimeters and ¢ is in seconds, find the velocity function and discuss the
motion of the attached mass.

Solution. The velocity function is

d d
v = o —[—3cost] =3sint
dt dt
Figure 2.5.3 shows the graphs of the position and velocity functions. The position function
tells us that the top of the mass oscillates between a low point of s = —3 and a high point of

s = 3 with one complete oscillation occuring every 2z seconds [the period of (10)]. The
top of the mass is moving up (the positive s-direction) when v is positive, is moving down
when v is negative, and is at a high or low point when v = 0. Thus, for example, the top of
the mass moves up from time ¢ = O to time ¢ = s, at which time it reaches the high point
s = 3 and then moves down until time r = 27, at which time it reaches the low point of
s = —3. The motion then repeats periodically. <«
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l/ QUICK CHECK EXERCISES 2.5

(See page 174 for answers.)

1. Find dy/dx. 3. Use a derivative to evaluate each limit.

(@) y=sinx (b) y =cosx sin(2+h)—1 csc(x + h) —csc
(¢c) y=tanx (d) y =secx (a) ,}i%% (b) }}imo x h) ol
2. Find f'(x) and f'(;/3) if f(x) = sin x cos x.
EXERCISE SET 2.5 I Graphing Utility
1-18 Find f'(x). 31. A 10 ft ladder leans against a wall at an angle 6 with the

1. f(x) =4cosx 4 2sinx
3. f(x) = —4x?cosx

5
5. =
F&) 5 +sinx

— COS x

. fx) = -+ sin x

5
X

. f(x) =2sin’x

- f) =

sin x

x2 4 sinx

horizontal, as shown in the accompanying figure. The top
of the ladder is x feet above the ground. If the bottom of
the ladder is pushed toward the wall, find the rate at which
x changes with respect to & when 6 = 60°. Express the
answer in units of feet/degree.

7. f(x) =secx —+2tanx 8. f(x) = (x2+ 1)secx ——

9. f(x) =4cscx —cotx 10. f(x) =cosx —xcscx ‘

11. f(x) = secxtanx 12. f(x) = cscxcotx 10 ft ]

cotx sec x

13. f) = 14+ cscx 14. f) = 1+ tanx \

15. f(x) = sin’ x + cos® x 16. f(x) = sec? x — tan® x ’ ——"  <Figure Ex-31

17. f(x) = Sinxseex 18. f(x) = G+ Deotx 32. An airplane is flying on a horizontal path at a height of

1+ xtanx 3 —cosxcscx :

3800 ft, as shown in the accompanying figure. At what rate
is the distance s between the airplane and the fixed point
P changing with respect to 6 when 6 = 30°? Express the
answer in units of feet/degree.

19-24 Find d*y/dx>.

19. y = xcosx 20. y =cscx

21. y =xsinx —3cosx 22, y =x%cosx +4sinx

23. y =sinxcosx 24. y =tanx

25. Find the equation of the line tangent to the graph of tan x at
(a) x=0 (b) x =n/4 (©) x = —n/4.

26. Find the equation of the line tangent to the graph of sin x at
(@ x=0 b) x=m (c) x =m/4.

27. (a) Show thaty = x sinx isasolutionto y” + y = 2cos x.
(b) Show that y = xsinx is a solution of the equation
y® 4+ 3" = —2cos x.

< Figure Ex-32

33. A searchlight is trained on the side of a tall building. As the
light rotates, the spot it illuminates moves up and down the
side of the building. That is, the distance D between ground
level and the illuminated spot on the side of the building is

28. (a) Show that y = cosx and y = sinx are solutions of the a function of the angle 6 formed by the light beam and the

equation y” +y = 0.
(b) Show that y = Asinx 4+ Bcosx is a solution of the
equation y” 4+ y = 0 for all constants A and B.

29. Find all values in the interval [—27, 277] at which the graph

of f has a horizontal tangent line.
(a) f(x) =sinx (b) f(x) =x4cosx
(c) f(x)=tanx (d) f(x) =secx

4 30. (a) Use a graphing utility to make rough estimates of the

values in the interval [0, 27] at which the graph of
y = sin x cos x has a horizontal tangent line.

(b) Find the exact locations of the points where the graph
has a horizontal tangent line.

horizontal (see the accompanying figure). If the searchlight
is located 50 m from the building, find the rate at which D
is changing with respect to 6 when 6 = 45°. Express your
answer in units of meters/degree.

i
|

< Figure Ex-33



34. An Earth-observing satellite can see only a portion of the
Earth’s surface. The satellite has horizon sensors that can
detect the angle 6 shown in the accompanying figure. Let
r be the radius of the Earth (assumed spherical) and & the
distance of the satellite from the Earth’s surface.

(a) Show that & = r(csc6 — 1).

(b) Usingr = 6378 km, find the rate at which 4 is changing
with respect to & when 8 = 30°. Express the answer in
units of kilometers/degree.

Source: Adapted from Space Mathematics, NASA, 1985.

B

h Sateliite

Earth < Figure Ex-34

35-38 True-False Determine whether the statement is true or
false. Explain your answer.

35. If g(x) = f(x)sinx, then g’(x) = f'(x)cosx.
36. If g(x) = f(x)sinx, then g’(0) = f(0).
37. If f(x)cosx = sinx, then f'(x) = sec? x.

38. Suppose that g(x) = f(x)secx, where f(0)=8 and
f'(0) = —2. Then

g0 = lim LW = 7O _\, Blsech =1
h—0 h >0 h

d
=8. —[secx] =8secO0tan0 =0
dx 0
39-40 Make a conjecture about the derivative by calculating
the first few derivatives and observing the resulting pattern.
d87 leO

d_x87 [Sin x] 40. W[COS x]

41. Let f(x) = cosx. Find all positive integers n for which
f™(x) =sinx.

39.

42. Let f(x) =sinx. Find all positive integers n for which
f™(x) =sinx.

FOCUS ON CONCEPTS

43. In each part, determine where f is differentiable.
(a) f(x) =sinx (b) f(x) =cosx
() f(x)=tanx (d) f(x) =cotx
e fx)= secx1 ) fx)= cscx1

(@ f&x) = Th cosx h f(x)=——"—
+ cosx sSin x COS X
() f) = 37— bk
— Sin x
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44. (a) Derive Formula (4) using the definition of a deriva-
tive.
(b) Use Formulas (3) and (4) to obtain (7).
(c) Use Formula (4) to obtain (6).
(d) Use Formula (3) to obtain (8).

45. Use Formula (1), the alternative form for the definition
of derivative given in Formula (13) of Section 2.2, that
is, _

P = fim =@
w— X w— X
and the difference identity

sin@ — sin 8 = 2sin <ﬂ> cos <a+,8)
2 2

d
to show that —[sin x] = cos x.
dx

46. Follow the directions of Exercise 45 using the difference

identity
cosa —cos B = —2sin «—p sin «tp
2 2
d .
to show that —[cos x] = —sin x.
dx

tan h
47. (2) Show that lim —" — 1.
h—0 h

(b) Use the result in part (a) to help derive the formula
for the derivative of tan x directly from the defini-
tion of a derivative.

48. Without using any trigonometric identities, find
. tan(x +y) —tany
lim ——M
x—0 X

[Hint: Relate the given limit to the definition of the
derivative of an appropriate function of y.]

49. The derivative formulas for sin x, cos x, tan x, cot x, sec x,
and csc x were obtained under the assumption that x is mea-
sured in radians. If x is measured in degrees, then

. sinx b
lim = —
x—=0 Xx 180

(See Exercise 48 of Section 1.6). Use this result to prove
that if x is measured in degrees, then

@ Lisinx] = =
a) —|SIn = —— COS
dx T 1o €

) Licosx] = -
—|[COS = ——78SInx.
dx %t 180 O

50. Writing Suppose that f is a function that is differentiable
everywhere. Explain the relationship, if any, between the
periodicity of f and that of f’. That is, if f is periodic,
must f’ also be periodic? If f’ is periodic, must f also be
periodic?
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VQUlCK CHECK ANSWERS 2.5

1. (a) cosx (b) —sinx (c) sec’x (d) secxtanx 2. f'(x)=cos’x —sin’x, f'(w/3) = —1

3. (a) % [sin x] ‘

x=m/2

m THE CHAIN RULE

d
=0 (b) E[cscx] = —cscxcotx

Mike Brinson/Getty Images
The cost of a car trip is a combination of
fuel efficiency and the cost of gasoline.

dy du_1
=Y _-20 au_ 21
&du dx 4 l
H
dy 1
Y_920.2=
dx 0 4 5
Rates of change multiply:
dy _dy du
dx  du dx
A Figure 2.6.1

The name “chain rule” is appropriate
because the desired derivative is ob-
tained by a two-link “chain” of simpler
derivatives.

In this section we will derive a formula that expresses the derivative of a composition
fog interms of the derivatives of f and g. This formula will enable us to differentiate
complicated functions using known derivatives of simpler functions.

DERIVATIVES OF COMPOSITIONS

Suppose you are traveling to school in your car, which gets 20 miles per gallon of gasoline.
The number of miles you can travel in your car without refueling is a function of the number
of gallons of gas you have in the gas tank. In symbols, if y is the number of miles you can
travel and u is the number of gallons of gas you have initially, then y is a function of u, or
y = f(u). As you continue your travels, you note that your local service station is selling
gasoline for $4 per gallon. The number of gallons of gas you have initially is a function
of the amount of money you spend for that gas. If x is the number of dollars you spend
on gas, then u = g(x). Now 20 miles per gallon is the rate at which your mileage changes
with respect to the amount of gasoline you use, so

d
) = d_y = 20 miles per gallon
u

Similarly, since gasoline costs $4 per gallon, each dollar you spend will give you 1/4 of a

gallon of gas, and / du 1
gx) = 1 gallons per dollar
x

Notice that the number of miles you can travel is also a function of the number of dollars
you spend on gasoline. This fact is expressible as the composition of functions

y = fu) = f(gx))

You might be interested in how many miles you can travel per dollar, which is dy/dx.
Intuition suggests that rates of change multiply in this case (see Figure 2.6.1), so
dy dy du 20miles 1gallon 20 miles

= — = : = = 5 miles per dollar
dx du dx 1 gallon 4 dollars 4 dollars

The following theorem, the proof of which is given in Appendix D, formalizes the
preceding ideas.

2.6.1 THEOREM (The Chain Rule) If g is differentiable at x and f is differentiable at
g(x), then the composition f o g is differentiable at x. Moreover, if

y=f(gkx) and u=g(x)

then y = f(u) and
dy dy du

= — 1
dx du dx M



Formula (1) is easy to remember be-
cause the left side is exactly what re-
sults if we “cancel” the du's on the right
side. This “canceling” device provides a
good way of deducing the correct form
of the chain rule when different vari-
ables are used. For example, if w is a
function of x and x is a function of ¢,
then the chain rule takes the form

dw dw dx

dt — dx dt

Confirm that (2) is an alternative ver-
sion of (1) by letting y = f(g(x)) and

u = g(x).

2.6 The Chain Rule

» Example 1 Find dy/dx if y = cos(x?).

Solution. Letu = x* and express y as y = cos u. Applying Formula (1) yields

dy dy du
dx  du dx
= E[COS ul - E[Xﬁ

= (—sinu) - 3x?)

= (—sin(x?)) - 3x?) = —3x%sin(x’) «

» Example 2 Find dw/dt if w = tanx and x = 4¢> +¢.
Solution. In this case the chain rule computations take the form
dw dw dx
dt — dx dt

d [tan x] d (423 + 1]
= — x| —
dx dt

= (sec’x) - (121> + 1)

= [sec’(@r® + )] - (126> + 1) = (1212 + 1) sec’ (48> + 1) <

Il AN ALTERNATIVE VERSION OF THE CHAIN RULE

175

Formula (1) for the chain rule can be unwieldy in some problems because it involves so
many variables. As you become more comfortable with the chain rule, you may want to

dispense with writing out the dependent variables by expressing (1) in the form

d
a[f(g(X))] = (fog)'(x) = f'(g(x)g'(x)

(@)

A convenient way to remember this formula is to call f the “outside function” and g the

“inside function” in the composition f(g(x)) and then express (2) in words as:

The derivative of f(g(x)) is the derivative of the outside function evaluated at the inside

function times the derivative of the inside function.

d
d—[f(g(X))] = f'(g(x))-g'(x)
X ——

Derivative of the outside
function evaluated at the

. . inside function
inside function

Derivative of the
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» Example 3 (Example I revisited) Find h'(x) if h(x) = cos(x?).

Solution. We can think of 4 as a composition f(g(x)) in which g(x) = x? is the inside
function and f(x) = cosx is the outside function. Thus, Formula (2) yields

H(x) = f'(g(x)) g (x)
Derivative of the outside

function evaluated at the
inside function

Derivative of the
inside function

= f'(x*) - 3x?
= —sin(x?) - 3x2 = —3x%sin(x?)

which agrees with the result obtained in Example 1. «

» Example 4

d 2 d 2 2 2
—[tan”“ x] = —[(tanx)“] = (2tanx) - (sec” x) = 2tan x sec” x
d_x dx ——— —————

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function

d 1 X
/%2 — . _ See Formula (6)
d Var+11= > 2 = 2 of Section 2.3, |
x 2vx2+1 x4+ 1
— =

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function

B GENERALIZED DERIVATIVE FORMULAS

There is a useful third variation of the chain rule that strikes a middle ground between
Formulas (1) and (2). If we let u = g(x) in (2), then we can rewrite that formula as

d ,, du

- = == 3

I [f)]=f (M)dx 3)
This result, called the generalized derivative formula for f, provides a way of using the
derivative of f(x) to produce the derivative of f(u), where u is a function of x. Table 2.6.1

gives some examples of this formula.

Table 2.6.1
GENERALIZED DERIVATIVE FORMULAS

dryry = pur-1 du
dX[u] ru

dx
d rgnul = cosu 94 d - _snudu
&[smu]—cosu X dx[cosu] smudx
d _ enn2,, du d — 2 du
CTX[tanu]_sec ua cB([cotu]_ csc udx

d - du a = au
&[secu]—wcutanudx dX[csr:u] cscucotu ”
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» Example 5 Find
@ Lisnen] ) Lrameten] © L [\/x3+cscx]
dx dx dx
(d) %[xz—x+2]3/4 (e) %[(1 +x” cotx) ]

Solution (a). Taking u = 2x in the generalized derivative formula for sin u yields

d . d . du d
—[sin(2x)] = —[sinu] = cosu— = cos2x - —[2x] = cos2x - 2 = 2 cos 2x
dx dx dx dx

Solution (b). Taking u = x> + 1 in the generalized derivative formula for tan u yields
2

d [tan( 24 ] = d [tan u] = sec du
dx * T dx = udx

d

= sec2()c2 +1)- d—[)c2 +1] = sec2()c2 +1)-2x
X

= 2xsec’(x> + 1)

Solution (¢). Taking u = x* + csc x in the generalized derivative formula for \/u yields

d d 1 d 1 d
—[\/x3+cscx] = —[Jul= - —[x? 4 cscx]
dx

dx 2Judx 233 fosex dx
1 (3x? tx) 3x2 — cscx cotx
=——— . (3x"—cscxcotx) = ——o =
2+4/x3 +cscx 2+4/x3 +cscx
Solution (d). Takingu = x? — x + 2 inthe generalized derivative formula for u>/* yields

d. > sa_ A sy 3 yjadu
- —x+ 2 —_ — — -
g A= e = e

3 d
= ‘—‘()c2 —x42)714. a[x2 —x+2]

3
- Z(xZ —x+2)*2x =1

Solution (e). Taking u =1+ x°cotx in the generalized derivative formula for 1%
yields

d d d
I [(l + x° cotx)’s] = E[LFS] = —8u’9£

d
=-8(1+ x cotx)*g - —[1 4+ x> cot x|
dx
= —8(1 +x” cotx) ™" - [x”(— csc® x) + 5x* cot x|

= (8x7 csc? x — 40x* cotx)(1 + x> cotx)™° «

Sometimes you will have to make adjustments in notation or apply the chain rule more
than once to calculate a derivative.

» Example 6 Find

d d
(a) o [sin(«/l + cosx )] (b) d_I; if u = sec/wt (w constant)
X
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TECHNOLOGY MASTERY

If you have a CAS, use it to perform the
differentiation in (4).

Solution (a). Taking u = /1 + cos x in the generalized derivative formula for sin u
yields

d d d
— [sin(\/l + cos x )] = —[sinu] = cosu—u
dx dx d

X

= cos(+/1 +cosx) - di [\/1 + cosx]

X
\/7 —sinx We used the generalized derivative
= cos(v 1 +cosx) - 2.1 + cos x formula for \/u withu = 1 + cos x.
sin x cos(+/1 + cos x)
24/1 4+ cosx

Solution (b).
d—M = i [sec «/a;] = sec M tan \/& i [ \/&] We used the generalized derivative
dt dt

dt formula for sec u with u = /wt.
S W We used the generalized derivative
= secvor tan v ot 2wt formula for /u with u = wt. «

DIFFERENTIATING USING COMPUTER ALGEBRA SYSTEMS

Even with the chain rule and other differentiation rules, some derivative computations can
be tedious to perform. For complicated derivatives, engineers and scientists often use
computer algebra systems such as Mathematica, Maple, or Sage. For example, although
we have all the mathematical tools to compute

d [<x2+1)1°sin3(\/7c>}
dx V14 csex

by hand, the computation is sufficiently involved that it may be more efficient (and less
error-prone) to use a computer algebra system.

“

VQU]CK CHECK EXERCISES 2.6  (See page 181 for answers.)

1. The chain rule states that the derivative of the composition 3. Find dy/dx.
of two functions is the derivative of the _______ function (@ y=@2+50 b) y=+/1+6x
evaluated at the __ function times the derivative of 4. Find dy/dx.
the _ function. (a) y = sin(3x 4 2) (b) y = (x*tanx)*
2. If y is a differentiable function of «, and u is a differentiable 5. Suppose that £(2) = 3, f'(2) = 4, g(3) = 6, and
function of x, then ¢'(3) = —5. Evaluate
dy (a) h'(2), where h(x) = g(f(x))
e (b) k'(3), where k(x) = f(3g(x)).

EXERCISE SET 2.6 I Graphing Utility CAS

1. Given that

3. Let f(x) = x> and g(x) = 2x — 3.

f0)=2,0)=0 and g'(0)=3 (a) Find (fog)(x) and (fog) (x).

find (f0g)'(0).
2. Given that

(b) Find (go f)(x) and (go f)(x).

4. Let f(x) = 5/x and g(x) = 4 + cos x.

f'9)=5¢2 =9 and g'@2)=-3 () Find (fog)(x) and (fog) (x).

find (f0g)'(2).

(b) Find (go f)(x) and (go f)'(x).



FOCUS ON CONCEPTS

5. Given the following table of values, find the indicated
derivatives in parts (a) and (b).

x | F | 00 | 90 | g'(¥)
3] 5 | -2 5| 7
5 3| -1 [12] 4

(@) F'(3), where F(x) = f(g(x))
(b) G'(3), where G (x) = g(f(x))

derivatives in parts (a) and (b).

fo | 09 | 900 | g'(¥)
1] 2 3 2 | -3
2] 0 4 1| -5

(@) F'(=1), where F(x) = f(g(x))
(b) G'(=1), where G(x) = g(f(x))

2.6 The Chain Rule

41-42 Use a CAS to find dy/dx.

41. y = [xsin2x + tan*(x7) ]’

179

6. Given the following table of values, find the indicated

7-26 Find f'(x).

7. f(x) = (x* +2x)7 8. f(x)=(Bx>+2x—1)°

9 (1) 10 = !
.f(x)_<x—;> -f(x)—m
4

— — 3 _
11. f(x) = Gty 12. f(x)=+/x3 —2x+5
13. f(x) =V4++/3x 14. f(x) = J12+ Jx
15. f(x) = sin ()%2) 16. f(x) = tan/x
17. f(x) =4cos’ x 18. f(x) =4x + Ssin*x
19. f(x) = cos’(3/x) 20. f(x) = tan*(x?)
21. f(x) = 2sec?(x7) 22. f(x) = cos® <L>

x+1

23. f(x) = 4/cos(5x) 24. f(x) =v3x — sin®(4x)
25. f(x) =[x + cse(x® +3)] 73
26. f(x) = [x* —sec(4x® —2)1™*

42. y = tan* (2 +

x3 4 sinx

(7 = x)V/3:2 + 5)

43-50 Find an equation for the tangent line to the graph at the

specified value of x.

43. y=xcos3x, x =1
44. y =sin(l +x%), x = -3

45. y:sec3(§—x>, X =—

13
46.y:(x—7),x:2
x

48. y =3cot*x, x :%

50. y = x=0

X
VT =x%
51-54 Find d*>y/dx>.

51. y = xcos(5x) — sin® x

14+x
1—x

53. y =

T

2

47. y =tan(4dx?), x = /7

49. y=x>/5—-x2, x =1

52. y =sin(3x?)

1
54. y = xtan (7>
X

55-58 Find the indicated derivative.

d
55. y = cot®*(r — 0); find —y.

6
6
A
56 5= (“FPY . fng P
cu+d du

d
57. —[acos’ 7w + b sin® nw]
do

58. x = csc? (g — y);

(a, b, ¢, d constants).

(a, b constants)

find d—x
dy

I~ 59. (a) Use a graphing utility to obtain the graph of the function

f(x) = x4 — x2.

(b) Use the graph in part (a) to make a rough sketch of the

graph of f’.

27-40 Find dy/dx.
27. y = x3sin®(5x)

29. y = x>sec(1/x)
31. y = cos(cos x)

33. y = cos’(sin 2x)

35 y=Gx+8) (1 - vx)°

37 B r=51\°
ER A T
_ 2x +3)°

39, y= AT
Y ax2 1)

28. y = J/x tan®(/x)

30. y = 7(53“”; .
sec(3x
32. y = sin(tan 3x) £ 60.
1 + csc(x?)
M, y=——=
YT T cotx?)

36. y = (x2+x) sin®x

1+X2 17
38. y=
= (5)

40. y = [1 +sin*(x*)]"?

(¢) Find f'(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f.

(d) Find the equation of the tangent line to the graph of f
at x = 1, and graph f and the tangent line together.

(a) Use a graphing utility to obtain the graph of the function
f(x) = sin x? cos x over the interval [—7/2, 7/2].

(b) Use the graph in part (a) to make a rough sketch of the
graph of f’ over the interval.

(c) Find f'(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f” over
the interval.

(d) Find the equation of the tangent line to the graph of f at
x =1, and graph f and the tangent line together over
the interval.
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61-64 True-False Determine whether the statement is true or
false. Explain your answer.

61.

62.
63.
64.
65.

66.

FOCUS ON CONCEPTS

d
If y = f(x), then E[ﬁ] =/ f'(x).
If y = f(u) and u = g(x), then dy/dx = f'(x) - g'(x).
If y = cos[g(x)], then dy/dx = — sin[g’(x)].
If y = sin®(3x%), then dy/dx = 27x2 sin?(3x?) cos(3x3).
If an object suspended from a spring is displaced vertically
from its equilibrium position by a small amount and re-
leased, and if the air resistance and the mass of the spring
are ignored, then the resulting oscillation of the object is
called simple harmonic motion. Under appropriate condi-
tions the displacement y from equilibrium in terms of time
t is given by y = Acoswt
where A is the initial displacement at time ¢ = 0, and w is
a constant that depends on the mass of the object and the
stiffness of the spring (see the accompanying figure). The
constant | A| is called the amplitude of the motion and w the
angular frequency.
(a) Show that
d*y 2
Sl A
dr? Y
(b) The period T is the time required to make one complete
oscillation. Show that T = 27/ w.
(c) The frequency f of the vibration is the number of os-
cillations per unit time. Find f in terms of the period T'.
(d) Find the amplitude, period, and frequency of an
object that is executing simple harmonic motion given
by y = 0.6 cos 15¢, where ¢ is in seconds and y is in
centimeters.

y

0 21tlw

y = A coswt

A Figure Ex-65

Find the value of the constant A so that y = A sin 3¢ satisfies

the equation 4y
—— + 2y = 4sin 3¢
dt? ey

67. Use the graph of the function f in the accompanying

figure to evaluate

o [ 7]

dx

x=—1

68. Using the function f in Exercise 67, evaluate

-3 -2 -1 0 1 2 <Figure Ex-67

4 @sinx)
dx x=m/6

69.

70.

The accompanying figure shows the graph of atmospheric

pressure p (Ib/in?) versus the altitude / (mi) above sea level.

(a) From the graph and the tangent line at # = 2 shown on
the graph, estimate the values of p and dp/dh at an
altitude of 2 mi.

(b) If the altitude of a space vehicle is increasing at the
rate of 0.3 mi/s at the instant when it is 2 mi above sea
level, how fast is the pressure changing with time at this
instant?

15

=
o
FTTTT T T T T T T T

[&)]

Pressure P (Ib/in?)

2 3456 7
Altitude h (mi)

0

|
01
< Figure Ex-69
The force F (in pounds) acting at an angle 6 with the hor-

izontal that is needed to drag a crate weighing W pounds
along a horizontal surface at a constant velocity is given by

uw
cos® + psinf

where u is a constant called the coefficient of sliding fric-

tion between the crate and the surface (see the accompany-

ing figure). Suppose that the crate weighs 150 1b and that

un=0.3.

(a) FinddF/d6 when6 = 30°. Express the answer in units
of pounds/degree.

(b) Find dF/dt when § = 30° if 6 is decreasing at the rate
of 0.5°/s at this instant.

i

< Figure Ex-70
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71. Recall that 76. Giventhat f'(x) = +/3x + 4and g(x) = x> — 1, find F'(x)
i(lxl) _ [ I, x>0 if F(x) = f(g(x)).
dx -1, x<0 77. Given that f'(x) = ——— and g(x) = v3x — 1, find
Use this result and the chain rule to find x> +1

F'(x)if F(x) = f(g(x)).

d
—(|sin x]) d
dx 78. Find f'(x2) if —[f(x?)] = x°.
for nonzero x in the interval (—m, 7). dx
72. Use the derivative formula for sin x and the identity 79. Find di[ FOTif di[ f(3x)] = 6x.
o n x X
COs X = sin (5 - x) 80. Recall that a function f is even if f(—x) = f(x) and odd

if f(—x) = — f(x), for all x in the domain of f. Assuming
that f is differentiable, prove:

to obtain the derivative formula for cos x.

73. Let 1 (a) f'isoddif f iseven
Foy=1" sin A #0 (b) f'isevenif f isodd.
0, x=0 81. Draw some pictures to illustrate the results in Exercise 80,
(a) Show that f is continuous at x = 0. and write a paragraph that gives an informal explanation of
(b) Use Definition 2.2.1 to show that £’(0) does not exist. why the results are true.
(c¢) Find f’(x) for x # 0. 82. Lety = fi(w), u = fL(v),v = fz(w),and w = f4(x). Ex-
(d) Determine whether limo f(x) exists. press dy/dx in terms of dy/du, dw/dx, du/dv, and dv/dw.
x—
74. Let 83. Find a formula for
d
Psin L. x £0 L))
fx) = x . N
0, =0 84. Writing The “co” in “cosine” comes from “complemen-

tary,” since the cosine of an angle is the sine of the comple-

(a) Show that f is continuous at x = 0. ;i
mentary angle, and vice versa:

(b) Use Definition 2.2.1 to find f7(0). . .
(¢) Find f'(x) for x # 0. cosx = sin (5 - x) and sinx = cos (5 - x)

(d) Show that f” is not continuous at x = 0. . .
Suppose that we define a function g to be a cofunction of a

function f if

gx)y=r (z — x) for all x

75. Given the following table of values, find the indicated de-
rivatives in parts (a) and (b).

; 2
f) | ') Thus, cosine and sine are cofunctions of each other, as are
1 7 cotangent and tangent, and also cosecant and secant. If g is
8 S -3 the cofunction of f, state a formula that relates g’ and the
cofunction of f’. Discuss how this relationship is exhibited
(@) g'(2), where g(x) = [f 0P by the derivatives of the cosine, cotangent, and cosecant
(b) K'(2), where h(x) = f(x?) functions.
¢/ QUICK CHECK ANSWERS 2.6
dy du 1 3
1. outside; inside; inside 2. - - — 3. (a) 10(x> +5)? - 2x = 20x (x> +5)° (b 6=
du dx (@) 10( ) ( ) ()2\/1+6x 1+ 6x
1 1 20
4. (a) 3cos(3x +2) (b) 4(x>tanx)’2xtanx + x%sec’x) 5. (a) g/ (f(2)f'(2) = =20 (b) f/<§g(3)) . gg/(3) =-3
CHAPTER 2 REVIEW EXERCISES [ Graphing Utility CAS
1. Explain the difference between average and instantaneous (a) Find the average rate of change of y with respect to x

rates of change, and discuss how they are calculated. over the interval [3, 4].
(b) Find the instantaneous rate of change of y with respect
tox atx = 3. (cont.)

2. In parts (a)—(d), use the function y = %xz.
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4.

5.

K~ 6.

10.

11.

(c) Find the instantaneous rate of change of y with respect
to x at a general x-value.

(d) Sketch the graph of y = %xz together with the secant
line whose slope is given by the result in part (a), and
indicate graphically the slope of the tangent line that
corresponds to the result in part (b).

. Complete each part for the function f(x) = x% + 1.

(a) Find the slope of the tangent line to the graph of f at a
general x-value.

(b) Find the slope of the tangent line to the graph of f at
x =2

A car is traveling on a straight road that is 120 mi long. For

the first 100 mi the car travels at an average velocity of 50

mi/h. Show that no matter how fast the car travels for the

final 20 mi it cannot bring the average velocity up to 60

mi/h for the entire trip.

At time ¢+ = 0 a car moves into the passing lane to pass a
slow-moving truck. The average velocity of the car from
t=1tot=1+his

3(h+ 1)>3 +580h — 3
10h

Vave =

Estimate the instantaneous velocity of the car at r =1,
where time is in seconds and distance is in feet.

A skydiver jumps from an airplane. Suppose that the dis-
tance she falls during the first f seconds before her parachute
opens is s(t) = 976((0.835)" — 1) + 176t, where s is in
feet. Graph s versus ¢ for 0 < ¢ < 20, and use your graph to
estimate the instantaneous velocity at ¢ = 15.

. A particle moves on a line away from its initial position

so that after ¢ hours it is s = 3¢> + ¢ miles from its initial

position.

(a) Find the average velocity of the particle over the interval
[1,3].

(b) Find the instantaneous velocity at t = 1.

. State the definition of a derivative, and give two interpreta-

tions of it.

. Use the definition of a derivative to find dy/dx, and check

your answer by calculating the derivative using appropriate
derivative formulas.

X

(@) y=+9—4x (b) y= 1
x2—1, x <1

Suppose that f(x) = kG —1), x> 1

For what values of k is f

(a) continuous? (b) differentiable?

The accompanying figure shows the graph of y = f’(x) for

an unspecified function f.

(a) For what values of x does the curve y = f(x) have a
horizontal tangent line?

(b) Over what intervals does the curve y = f(x) have tan-
gent lines with positive slope?

12.

13.

~ 14.

(c) Over what intervals does the curve y = f(x) have tan-
gent lines with negative slope?
(d) Given that g(x) = f(x) sinx, find g”(0).

<« Figure Ex-11

Sketch the graph of a function f for which f(0) =1,
f'(0)=0, f'(x) >0if x <0,and f'(x) <0ifx > 0.
According to the U.S. Bureau of the Census, the estimated
and projected midyear world population, N, in billions for
the years 1950, 1975, 2000, 2025, and 2050 was 2.555,
4.088, 6.080, 7.841, and 9.104, respectively. Although the
increase in population is not a continuous function of the
time ¢, we can apply the ideas in this section if we are will-
ing to approximate the graph of N versus ¢ by a continuous
curve, as shown in the accompanying figure.

(a) Use the tangent line at # = 2000 shown in the figure to
approximate the value of dN/dt there. Interpret your
result as a rate of change.

(b) The instantaneous growth rate is defined as

dN/dt
N

Use your answer to part (a) to approximate the instanta-
neous growth rate at the start of the year 2000. Express
the result as a percentage and include the proper units.

=
o
1

World population N (billions)

O R, N W hH U1 O 0 O
T

| | | I |
1950 1975 2000 2025 2050

Time t (years)

<« Figure Ex-13
Use a graphing utility to graph the function
f) =k —x =1 —x

and estimate the values of x where the derivative of this
function does not exist.



15-18 (a) Use a CAS to find f’(x) via Definition 2.2.1; (b)
check the result by finding the derivative by hand; (c) use the
CAS to find f"(x).

15. f(x) = x?sinx 16. f(x) = /x +cos’x
2x2—x+5 tan x
7. /@0 =375 1+x2
19. The amount of water in a tank ¢ minutes after it has started
to drain is given by W = 100(t — 15)? gal.
(a) At what rate is the water running out at the end of 5
min?
(b) What is the average rate at which the water flows out
during the first 5 min?

18. f(x) =

20. Use the formula V = I3 for the volume of a cube of side I
to find
(a) the average rate at which the volume of a cube changes
with [ as [ increases from/ =2tol =4
(b) the instantaneous rate at which the volume of a cube
changes with / when = 5.

4 21-22 Zoom in on the graph of £ on an interval containing
x = xo until the graph looks like a straight line. Estimate the
slope of this line and then check your answer by finding the exact
value of f/(xo).

21. (@) f(x)=x>—1, xo=1.8
2
(b) f(x) = ——, xp=3.5
x—2
22. (@) f(x)=x>—x24+1, xp=23

X
b = ———, x0=—-05
b) () = 7 %
23. Suppose that a function f is differentiable at x = 1 and
lim fa+h -5
h—0 h

Find f(1) and f'(1).
24. Suppose that a function f is differentiable at x = 2 and
X flx) —24
x—=2 N

lim
x—2
Find f(2) and f'(2).
25. Find the equations of all lines through the origin that are
tangent to the curve y = x3 — 9x? — 16x.

28

26. Find all values of x for which the tangent line to the curve
y = 2x3 — x? is perpendicular to the line x + 4y = 10.

27. Let f(x) = x2. Show that for any distinct values of a and
b, the slope of the tangent lineto y = f(x) atx = %(a + b)
is equal to the slope of the secant line through the points
(a,a®) and (b, b*). Draw a picture to illustrate this result.
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28. In each part, evaluate the expression given that f(1) =1,
g(1) ==2, f'(1) =3,and g'(1) = —L.

d d
@ - [f(x)g(x)]' (b) —[f (x)]
X e

=1 dx | g(x)
d d )
© - [VIo] @ (g ()

x=1

x=1

29-32 Find f(x).
29. (a) f(x) =x%—3/x+5x73

d) fx)=2x+ D52 -7)
30. (a) f(x) =sinx +2cos’x

(b) f(x) = (1 +secx)(x?> — tanx)

31. (a) f(x) =~3Bx+1(x —1)?

3x+ 1Y
®) f(x) =< = )

csc2x
x345

32. (@) f(x)= cot( ) b) f(x)=

2x + sin’ x

33-34 Find the values of x at which the curve y = f(x) has a
horizontal tangent line.
(x —3)*
34. =
fo =3 Tox
35. Find all lines that are simultaneously tangent to the graph
of y = x? 4 1 and to the graph of y = —x? — 1.

33. f(x) = 2x +70(x —2)°

36. (a) Let n denote an even positive integer. Generalize the
result of Exercise 35 by finding all lines that are simul-
taneously tangent to the graph of y = x" +n — 1 and
to the graphof y = —x" —n 4 1.

(b) Let n denote an odd positive integer. Are there any
lines that are simultaneously tangent to the graph of
y =x"+n — 1andto the graphof y = —x" —n + 1?
Explain.
37. Find all values of x for which the line that is tangent to
y = 3x — tan x is parallel to the line y — x = 2.

i~ 38.

Approximate the values of x at which the tangent line to the
graph of y = x* — sin x is horizontal.

39. Suppose that f(x) = M sinx + N cos x for some constants
M and N. If f(7x/4) = 3 and f'(t/4) = 1, find an equation
for the tangent line to y = f(x) at x = 37/4.

40. Suppose that f(x) = M tanx + N sec x for some constants
M and N. If f(/4) = 2 and f'(t/4) = 0, find an equation
for the tangent line to y = f(x) at x = 0.

41. Suppose that f'(x) = 2x - f(x) and f(2) = 5.
(a) Find g’'(7/3) if g(x) = f(secx).
(b) Find &' (2) if h(x) = [f(x)/(x — DI*.
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1. Suppose that f is a function with the properties (i) f is differ-

entiable everywhere, (ii) f(x + y) = f(x) f(y) for all values

of x and y, (iii) f(0) # 0, and (iv) f'(0) = 1.

(a) Show that f(0) = 1. [Hint: Consider f(0 + 0).]

(b) Show that f(x) > 0 for all values of x. [Hint: First show
that f(x) # O for any x by considering f(x — x).]

(c) Use the definition of derivative (Definition 2.2.1) to show
that f'(x) = f(x) for all values of x.

. Suppose that f and g are functions each of which has the

properties (i)—(iv) in Exercise 1.

(a) Show that y = f(2x) satisfies the equation y’ = 2y in
two ways: using property (ii), and by directly applying
the chain rule (Theorem 2.6.1).

(b) If k is any constant, show that y = f(kx) satisfies the
equation y’' = ky.

(c) Find a value of k such that y = f(x)g(x) satisfies the
equation y’' = ky.

(d) If h = f/g, find h'(x). Make a conjecture about the
relationship between f and g.

. (a) Apply the product rule (Theorem 2.4.1) twice to show
that if f, g, and h are differentiable functions, then
f - g - his differentiable and

(f-g-hW=f-gh+f g h+tf-gW
(b) Suppose that f, g, h, and k are differentiable functions.
Derive a formula for (f - g - h - k)'.

(c) Based on the result in part (a), make a conjecture about
a formula differentiating a product of n functions. Prove
your formula using induction.

. (a) Apply the quotient rule (Theorem 2.4.2) twice to show

that if f, g, and h are differentiable functions, then
(f/g)/h is differentiable where it is defined and

g h—f.9o h—f-g-W
(g =181 gfhz o

(b) Derive the derivative formula of part (a) by first simplify-
ing (f/g)/h and then applying the quotient and product
rules.

(c) Apply the quotient rule (Theorem 2.4.2) twice to derive
a formula for [ f/(g/h)].

(d) Derive the derivative formula of part (c) by first simplify-
ing f/(g/h) and then applying the quotient and product
rules.

5. Assume that h(x) = f(x)/g(x) is differentiable. Derive the

quotient rule formula for 4’(x) (Theorem 2.4.2) in two ways:

(a) Write h(x) = f(x) - [g(x)]"! and use the product and
chain rules (Theorems 2.4.1 and 2.6.1) to differentiate /.

(b) Write f(x) = h(x) - g(x) and use the product rule to de-
rive a formula for A’ (x).

QEXPANDlNG THE CALCULUS HORIZON

To learn how derivatives can be used in the field of robotics, see the module entitled Robotics at:

www.wiley.com/college/anton
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The growth and decline of animal
populations and natural resources
can be modeled using basic
functions studied in calculus.

= TOPICS IN
DIFFERENTIATION

We begin this chapter by extending the process of differentiation to functions that are either
difficult or impossible to differentiate directly. We will discuss a combination of direct and
indirect methods of differentiation that will allow us to develop a number of new derivative
formulas that include the derivatives of logarithmic, exponential, and inverse trigonometric
functions. Later in the chapter, we will consider some applications of the derivative. These will
include ways in which different rates of change can be related as well as the use of linear
functions to approximate nonlinear functions. Finally, we will discuss L'Hopital’s rule, a
powerful tool for evaluating limits.

m IMPLICIT DIFFERENTIATION

Up to now we have been concerned with differentiating functions that are given by
equations of the form y = f(x). In this section we will consider methods for differen-
tiating functions for which it is inconvenient or impossible to express them in this form.

FUNCTIONS DEFINED EXPLICITLY AND IMPLICITLY

An equation of the form y = f(x) is said to define y explicitly as a function of x because
the variable y appears alone on one side of the equation and does not appear at all on the
other side. However, sometimes functions are defined by equations in which y is not alone
on one side; for example, the equation

yx+y+l=x (1)

is not of the form y = f(x), but it still defines y as a function of x since it can be rewritten

as x—1

:x+1

y

Thus, we say that (1) defines y implicitly as a function of x, the function being

x—1
x+1

fx) =

185




186 Chapter 3 / Topics in Differentiation

an
NPA

xX2+y2=1

%

>
<
x>

y=—1-x2

A Figure 3.1.1
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L y=Vx

|
|
|
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\
LY==V

A Figure 3.1.2  The graph of x = y?
does not pass the vertical line test, but

the graphs of y = /x and y = —/x do.

An equation in x and y can implicitly define more than one function of x. This can occur
when the graph of the equation fails the vertical line test, so it is not the graph of a function
of x. For example, if we solve the equation of the circle

4yt =1 )

for y in terms of x, we obtain y = £+/1 — x2, so we have found two functions that are
defined implicitly by (2), namely,

A =V1-x2 and  f(x) =—V1—x? 3)

The graphs of these functions are the upper and lower semicircles of the circle x> + y? = 1
(Figure 3.1.1). This leads us to the following definition.

3.1.1 perFINITION  We will say that a given equation in x and y defines the function f
implicitly if the graph of y = f(x) coincides with a portion of the graph of the equation.

» Example 1 The graph of x = y? is not the graph of a function of x, since it does not
pass the vertical line test (Figure 3.1.2). However, if we solve this equation for y in terms of
X, we obtain the equations y = /x and y = —./x, whose graphs pass the vertical line test
and are portions of the graph of x = y? (Figure 3.1.2). Thus, the equation x = y? implicitly

defines the functions fil) =X and  fr(x) = —J/x <

Although it was a trivial matter in the last example to solve the equation x = y? for y
in terms of x, it is difficult or impossible to do this for some equations. For example, the
equation x3 + y3 _ 3xy (4)
can be solved for y in terms of x, but the resulting formulas are too complicated to be
practical. Other equations, such as sin(xy) = y, cannot be solved for y by any elementary
method. Thus, even though an equation may define one or more functions of x, it may not
be possible or practical to find explicit formulas for those functions.

Fortunately, CAS programs, such as Mathematica and Maple, have “implicit plotting”
capabilities that can graph equations such as (4). The graph of this equation, which is called
the Folium of Descartes, is shown in Figure 3.1.3a. Parts (b) and (c¢) of the figure show
the graphs (in blue) of two functions that are defined implicitly by (4).

A Figure 3.1.3
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B IMPLICIT DIFFERENTIATION
In general, it is not necessary to solve an equation for y in terms of x in order to differentiate
the functions defined implicitly by the equation. To illustrate this, let us consider the simple

equation Yy =1 )
One way to find dy/dx is to rewrite this equation as
1
y== (6)
X
from which it follows that dy 1
= ™)
X X

Another way to obtain this derivative is to differentiate both sides of (5) before solving for
y in terms of x, treating y as a (temporarily unspecified) differentiable function of x. With
this approach we obtain d d
—[xy]l = —I1

I [xy] I (11

d d

- - =0
xdx[y]erdx[x]

dy

—_— =0
xdx+y

y_ ¥

dx X

If we now substitute (6) into the last expression, we obtain

dy 1
dx  x?
which agrees with Equation (7). This method of obtaining derivatives is called implicit

differentiation.

» Example 2 Use implicit differentiation to find dy/dx if 5y? + siny = x°.
d d
—[5y? +siny] = —[x?
dx[ Yy~ +siny] dx[x]

sd[2]+d[‘ 1=2
—_— — [ S1n = X
dxy dx Y

because y is a function of x.

d d ;
5 2y _y + (COS y) _y = 2x The chain rule was used here
dx dx

10y 2 4 cos ' =2
—_— COS — = LX
ydx Y dx

René Descartes (1596-1650) Descartes, a French aristo-  arose before 11 A.M., and dabbled in the study of human physiology,
crat, was the son of a government official. He graduated  philosophy, glaciers, meteors, and rainbows. He eventually moved
from the University of Poitiers with alaw degree at age 20.  to Holland, where he published his Discourse on the Method, and
After a brief probe into the pleasures of Paris he became  finally to Sweden where he died while serving as tutor to Queen
a military engineer, first for the Dutch Prince of Nassau  Christina. Descartes is regarded as a genius of the first magnitude.
and then for the German Duke of Bavaria. It was dur- In addition to major contributions in mathematics and philosophy
ing his service as a soldier that Descartes began to pursue mathemat-  he is considered, along with William Harvey, to be a founder of
ics seriously and develop his analytic geometry. After the wars, he = modern physiology.

returned to Paris where he stalked the city as an eccentric, wearing [Image: http://en.wikipedia.org/wiki/File: Frans_
a sword in his belt and a plumed hat. He lived in leisure, seldom el AR et an I Ren G AD Bescaies /s
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A Figure 3.1.4

Solving for dy/dx we obtain dy 2%

- ®)
dx 10y 4cosy

Note that this formula involves both x and y. In order to obtain a formula for dy/dx that
involves x alone, we would have to solve the original equation for y in terms of x and then
substitute in (8). However, it is impossible to do this, so we are forced to leave the formula
for dy/dx in terms of x and y. <«

» Example 3 Use implicit differentiation to find d?y/dx? if 4x> — 2y> = 9.

Solution. Differentiating both sides of 4x? — 2y? = 9 with respect to x yields

d
8y —4y2 — 0
dx
from which we obtain
dy 2x
= ©
X y
Differentiating both sides of (9) yields
d? 2) — (2x)(dy/d
d*y (@) — 2x)(dy/dx) 10,

dx? y2

Substituting (9) into (10) and simplifying using the original equation, we obtain
d’y 2y —2xQ2x/y) 2y*—4x* 9

dx? - y2 - y3 - y3

In Examples 2 and 3, the resulting formulas for dy/dx involved both x and y. Although
it is usually more desirable to have the formula for dy/dx expressed in terms of x alone,
having the formula in terms of x and y is not an impediment to finding slopes and equations
of tangent lines provided the x- and y-coordinates of the point of tangency are known. This
is illustrated in the following example.

» Example 4 Find the slopes of the tangent lines to the curve y> — x + 1 = 0 at the
points (2, —1) and (2, 1).

Solution. We could proceed by solving the equation for y in terms of x, and then evalu-
ating the derivative of y = «/x — 1 at (2, 1) and the derivative of y = —+/x — l at (2, —1)
(Figure 3.1.4). However, implicit differentiation is more efficient since it can be used for
the slopes of both tangent lines. Differentiating implicitly yields

d _, d

E[y —x+1]= E[O]
d

A L L= 4
1= —lxl+ (1] = 0]

dy
Zya —1=0
dy 1
dx ~ 2y
At (2, —1) we have y = —1, and at (2, 1) we have y = 1, so the slopes of the tangent lines
to the curve at those points are

dy 1 dy 1
— =—— and —| ==
dx |22 2 dx ;=2 2

y=—1

|



Formula (11) cannot be evaluated at
(0, 0) and hence provides no informa-
tion about the nature of the Folium of
Descartes at the origin. Based on the
graphsin Figure 3.1.3, what can you say
about the differentiability of the implic-
itly defined functions graphed in blue in
parts (b) and (c) of the figure?

A Figure 3.1.5

A Figure 3.1.6
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» Example 5

(a) Use implicit differentiation to find dy/dx for the Folium of Descartes x3 + y3 = 3xy.
(b) Find an equation for the tangent line to the Folium of Descartes at the point (%, %)

(c) At what point(s) in the first quadrant is the tangent line to the Folium of Descartes
horizontal?

Solution (a). Differentiating implicitly yields

—[x* + ] = i[3xy]
d dx
dy dy
3x2 +3y*—= =3x—+3
+ 3y p xdx + 3y
dy dy
2 28y 4y
A dx xdx ty
dy
2 NYY _ 2
(v x)dx y—x
d )
y_y—x (an
dx y*—x

Solution (b). Atthe point (3, 3), we have x = 3 and y = 3, so from (11) the slope 7y
of the tangent line at this point is

dy|  _G2-6G/22_
dx |22~ (3/22 = (3/2)

Mian =

Thus, the equation of the tangent line at the point (%, %) is

y-3=-1(-) or vhy=3

which is consistent with Figure 3.1.5.

Solution (c). The tangent line is horizontal at the points where dy/dx = 0, and from
(11) this occurs only where y — x2=0or

y=x’ (12)
Substituting this expression for y in the equation x> + y* = 3xy for the curve yields
x4+ () =343
x0—2x3=0
*x3-2)=0
whose solutions are x = 0 and x = 2'/3. From (12), the solutions x = 0 and x = 21/3 yield

the points (0, 0) and (21/ 3, 22/ 3, respectively. Of these two, only (21/ 3, 22/ 3) is in the first
quadrant. Substituting x = 2'/3, y = 223 into (11) yields

dy _ 0 _0
dx |7 243 _ 23 T

We conclude that (213, 22/3) ~ (1.26, 1.59) is the only point on the Folium of Descartes
in the first quadrant at which the tangent line is horizontal (Figure 3.1.6). «
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I DIFFERENTIABILITY OF FUNCTIONS DEFINED IMPLICITLY

When differentiating implicitly, it is assumed that y represents a differentiable function of
x. If this is not so, then the resulting calculations may be nonsense. For example, if we
differentiate the equation

4y 4+1=0 (13)
we obtain d d
2x+2y—y=0 or o1
dx dx y

However, this derivative is meaningless because there are no real values of x and y that
satisfy (13) (why?); and hence (13) does not define any real functions implicitly.

The nonsensical conclusion of these computations conveys the importance of knowing
whether an equation in x and y that is to be differentiated implicitly actually defines some
differentiable function of x implicitly. Unfortunately, this can be a difficult problem, so we

will leave the discussion of such matters for more advanced courses in analysis.

l/ QUICK CHECK EXERCISES 3.1

(See page 192 for answers.)

1. The equation xy 4+ 2y = 1 defines implicitly the function
y=—
2. Use implicit differentiation to find dy/dx for x> — y> = xy.

EXERCISE SET 3.1 CAS

3. The slope of the tangent line to the graphof x +y +xy =3
at(1,1)is — .

4. Use implicit differentiation to find d?y/dx? for sin y = x.

1-2

(a) Find dy/dx by differentiating implicitly.

(b) Solve the equation for y as a function of x, and find dy/dx
from that equation.

(c) Confirm that the two results are consistent by expressing the
derivative in part (a) as a function of x alone.

L x4+xy—2x3=2 2. Jy—sinx =2

3-12 Find dy/dx by implicit differentiation.
3. X2+ y2 =100 4. 23+ 33 =3xy?
5. x2y+3xy’ —x=3 6. x3y2 —5x2y +x =1

1 1 x+y
7. —+—==1 8. x*=
NEING x =y
9. sin(x?y?) = x 10. cos(xy?) =y
xy? .
11. tan*(xy? +y) = x 12. ——=1+y
1+secy

13-18 Find d”y/dx? by implicit differentiation.

13. 2x2 —3y* =4 4. > +y3=1
15. 3y’ —4=0 16. xy+y> =2
17. y+siny =x 18. xcosy =y

19-20 Find the slope of the tangent line to the curve at the
given points in two ways: first by solving for y in terms of x
and differentiating and then by implicit differentiation.

19. x2+y2 =1; (1/2,4/3/2), (1/2, —=/3/2)

20. y> —x +1=0; (10,3), (10, =3)
21-24 True-False Determine whether the statement is true or
false. Explain your answer.

21. If an equation in x and y defines a function y = f(x) im-
plicitly, then the graph of the equation and the graph of f
are identical.

22. The function

V1 —x2, 0<x<1
fx) =
—V1-x2, —-1<x<0

is defined implicitly by the equation x2 4 y* = 1.

23. The function |x| is not defined implicitly by the equation
(x+y)x—y) =0

24. If y is defined implicitly as a function of x by the equation
x2 4+ y? =1, thendy/dx = —x/y.

25-28 Use implicit differentiation to find the slope of the tan-
gent line to the curve at the specified point, and check that your
answer is consistent with the accompanying graph on the next

page.
25. x* +y* = 16; (1, v/15) [Lamé’s special quartic)

26. v +yx? +x2—3y2=0; (0,3) [trisectrix]

27. 2(x% 4+ y)? =252 — ¥?); (3,1) [lemniscate]

28. x¥3 423 = 4; (—1,34/3) [four-cusped hypocycloid|
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A Figure Ex-28

29-32 Use implicit differentiation to find the specified deri-
vative.

29. a* —t* = 6a’t; da/dt 30. Ju+Jv=25; du/dv
31. a’w?® + b*2? =1 (a, b constants); dw/dA
32. y =sinx; dx/dy

FOCUS ON CONCEPTS

33. In the accompanying figure, it appears that the ellipse
x2 4 xy 4+ y> = 3 has horizontal tangent lines at the

points of intersection of the ellipse and the line y = —2x.
Use implicit differentiation to explain why this is the
case.
y
y =-2X 3r
- x2+xy+y?=3
1 -
X
| | | | |
-3 -2 \1 1 3
-1+
-2+
-3+

< Figure Ex-33

34. (a) A student claims that the ellipse x> — xy + y2 =1
has a horizontal tangent line at the point (1, 1).
Without doing any computations, explain why the
student’s claim must be incorrect.

(b) Find all points on the ellipse x> — xy + y> =1 at
which the tangent line is horizontal.

35. (a) Use the implicit plotting capability of a CAS to graph

the equation y* 4+ y2 = x(x — 1).
(b) Use implicit differentiation to help explain why the
graph in part (a) has no horizontal tangent lines.
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(c) Solve the equation y* + y? = x(x — 1) for x in terms
of y and explain why the graph in part (a) consists of
two parabolas.

36. Use implicit differentiation to find all points on the graph of

y* 4+ y? = x(x — 1) at which the tangent line is vertical.

37. Find the values of @ and b for the curve x2y + ay? = b if

the point (1, 1) is on its graph and the tangent line at (1, 1)

has the equation 4x 4+ 3y = 7.

38. At what point(s) is the tangent line to the curve y* = 2x?

perpendicular to the line x + 2y — 2 = 0?

39-40 Two curves are said to be orthogonal if their tangent
lines are perpendicular at each point of intersection, and two
families of curves are said to be orthogonal trajectories of one
another if each member of one family is orthogonal to each
member of the other family. This terminology is used in these
exercises.

39. The accompanying figure shows some typical members of
the families of circles x2 4+ (y — ¢)?> = ¢? (black curves)
and (x — k)? + y?> = k? (gray curves). Show that these fam-
ilies are orthogonal trajectories of one another. [Hint: For
the tangent lines to be perpendicular at a point of inter-
section, the slopes of those tangent lines must be negative
reciprocals of one another.]

40. The accompanying figure shows some typical members
of the families of hyperbolas xy = ¢ (black curves) and
x% — y> =k (gray curves), where ¢ # 0 and k # 0. Use
the hint in Exercise 39 to show that these families are or-
thogonal trajectories of one another. ,

y

()

\ i)
N4 X

NY

A Figure Ex-39

A Figure Ex-40

41. (a) Use the implicit plotting capability of a CAS to graph

the curve C whose equation is x> — 2xy 4+ y3 = 0.

(b) Use the graph in part (a) to estimate the x-coordinates
of a point in the first quadrant that is on C and at which
the tangent line to C is parallel to the x-axis.

(c) Find the exact value of the x-coordinate in part (b).

42. (a) Use the implicit plotting capability of a CAS to graph

the curve C whose equation is x> — 2xy + y* = 0.
(b) Use the graph to guess the coordinates of a point in the
first quadrant that is on C and at which the tangent line
to C is parallel to the line y = —x.
(c) Use implicit differentiation to verify your conjecture in
part (b).
43. Find dy/dx if |

dt
2yt +y=1 and — = —
dx cost
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44. Find equations for two lines through the origin that are tan- 46. Writing A student asks: “Suppose implicit differentiation
gent to the ellipse 2x% — 4x +y? + 1 =0. yields an undefined expression at a point. Does this mean

45. Writing Write a paragraph that compares the concept of that dy/dx is undefined at that point?” Using the equation
an explicit definition of a function with that of an implicit x* —2xy 4+ y* = 0 as a basis for your discussion, write a
definition of a function. paragraph that answers the student’s question.

‘/QUICK CHECK ANSWERS 3.1

1 2diy_Z)c—y

1. . =
x+2 dx  x+3y?

3. -1 4. =sec’ ytany

d’y
dx?

m DERIVATIVES OF LOGARITHMIC FUNCTIONS

In this section we will obtain derivative formulas for logarithmic functions, and we will
explain why the natural logarithm function is preferred over logarithms with other bases

in calculus.

Il DERIVATIVES OF LOGARITHMIC FUNCTIONS
We will establish that f(x) = Inx is differentiable for x > 0 by applying the derivative
definitionto f(x). To evaluate the resulting limit, we will need the fact that In x is continuous

for x > 0 (Theorem 1.6.3), and we will need the limit

lim(1+v)/' =e
v—>0

This limit can be obtained from limits (7) and (8) of Section 1.3 by making the substitution
v = 1/x and using the fact that v — 0T as x — 4o and v — 0~ as x — —oo. This produces
two equal one-sided limits that together imply (1) (see Exercise 64 of Section 1.3).

d
—[Inx] = lim
dx h—0 h

o1 <x+h)
Iim —In
h—0h X

1 h
lim —In <1 + —)
h—0h X

1
lim — In(1 + v)
v—>0 VX

1 1
= — lim —In(1 +v)
X v—=00v

1

= lim In(1 4 v)""

X v—>0

_ l . 1/v

=—In|lim (1 +v)
X v—0

= —Ine

= | = =

In(x +h) —Inx

The quotient property of
logarithms in Theorem 0.5.2

Let v = h/x and note that
v— 0 if and only if 7 — 0.

x is fixed in this limit computation, so 1/x
can be moved through the limit sign.

The power property of
logarithms in Theorem 0.5.2

In x is continuous on (0, +cc) so we can
move the limit through the function symbol.

Since Ine =1



Note that, among all possible bases,
the base b = e produces the simplest
formula for the derivative of log; x.
This is one of the reasons why the natu-
ral logarithm function is preferred over
other logarithms in calculus.

y = Inx with tangent lines

A Figure 3.2.1
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Thus,
d 1
—[nx]=—-, x>0 2)
dx X

A derivative formula for the general logarithmic function log, x can be obtained from
(2) by using Formula (6) of Section 0.5 to write

d N | d [Inx 1 d [lnx]
— |10 = — | — | = ——|In
de BT e | T mbax

It follows from this that

d 1
“n -
axhogxl =77, x>0 )

» Example 1

. . . . 1
(a) Figure 3.2.1 shows the graph of y = Inx and its tangent lines at the points x = 3, 1, 3,

and 5. Find the slopes of those tangent lines.

(b) Does the graph of y = Inx have any horizontal tangent lines? Use the derivative of
In x to justify your answer.

Solution (a). From (2), the slopes of the tangent lines at the points x = %, 1,3, and 5

are 1/x =2, 1, %, and %, respectively, which is consistent with Figure 3.2.1.
Solution (b). 1t does not appear from the graph of y = In x that there are any horizontal
tangent lines. This is confirmed by the fact that dy/dx = 1/x is not equal to zero for any
real value of x. «

If u is a differentiable function of x, and if u(x) > 0, then applying the chain rule to (2)
and (3) produces the following generalized derivative formulas:

1 du d 1 du

a L N
an logyul = "%~ ax

- — 4-5
u dx dx (4-5)

d[I]
—[lnu] =
dx

EE— d
» Example 2 Find d—[ln(x2 + D]
X

Solution. Using (4) with u = x? + 1 we obtain

d[2+1] L >
_ . —[x — 2x =
x24+1 dx x24+1 X241

d 2
—I[In(x"+ D] =
dx
When possible, the properties of logarithms in Theorem 0.5.2 should be used to convert
products, quotients, and exponents into sums, differences, and constant multiples before
differentiating a function involving logarithms.

» Example 3
d [l (xzsinx)i| d [21 4 InGsinx) 11 (14 )}
— || —= = — nx nsmx) — —in X
dx 1T+ x 2

dx
2 cosx 1
x sinx  2(1+x)

2
— +cotx —
X + * 24+ 2x
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Figure 3.2.2 shows the graph of f(x) = In|x|. This function is important because it
“extends” the domain of the natural logarithm function in the sense that the values of In | x|
and In x are the same for x > 0, but In |x| is defined for all nonzero values of x, and In x is
only defined for positive values of x.

y
X
_i\‘/l
y=In|x|

P Figure 3.2.2
The derivative of In |x| for x # 0 can be obtained by considering the cases x > 0 and
x < 0 separately:

Case x > 0. In this case |x| = x, so

i x] = Lpinxy = 2
dx . T dx x_x

Case x < 0. In this case |x| = —ux, so it follows from (4) that
Lol = L) = —— - Lo =]
—|In|x|{| = —I|In(—Xx)| = c——x] = -
dx dx (—x) dx X

Since the same formula results in both cases, we have shown that

i[ln|x|]:l if x 20 (6)
dx X

» Example 4 From (6) and the chain rule,

- —[sinx] = =cotx <

d
= nlsi —
dx [Infsinx]] sinx dx sin x

H LOGARITHMIC DIFFERENTIATION
We now consider a technique called logarithmic differentiation that is useful for differen-
tiating functions that are composed of products, quotients, and powers.

» Example 5 The derivative of
x2YTx — 14
(14 x2)*

is messy to calculate directly. However, if we first take the natural logarithm of both sides
and then use its properties, we can write

Iny =2Inx + L In(7x — 14) — 4In(1 + x?)

Differentiating both sides with respect to x yields
ldy 2 n 7/3 8x
ydx x  Ix—14 14 x2




REMARK

In the next section we will discuss dif-
ferentiating functions that have expo-
nents which are not constant.

3.2 Derivatives of Logarithmic Functions
Thus, on solving for dy/dx and using (7) we obtain

dy x*JTx — 14 [2 1 8x ]

dx (14 x2)4 x+3x—6 1+ x2
Since In y is only defined for y > 0, the computations in Example 5 are only valid for x > 2 (verify).
However, because the derivative of In y is the same as the derivative of In|y|, and because In |y| is
defined for y < 0 as well as y > 0, it follows that the formula obtained for dy/dx is valid for x < 2 as
well as x > 2. In general, whenever a derivative dy/dx is obtained by logarithmic differentiation, the
resulting derivative formula will be valid for all values of x for which y # 0. It may be valid at those
points as well, but it is not guaranteed.

DERIVATIVES OF REAL POWERS OF x
‘We know from Theorem 2.3.2 and Exercise 82 in Section 2.3, that the differentiation formula

: ®)

r r—
I [x']=rx
holds for constant integer values of ». We will now use logarithmic differentiation to show
that this formula holds if  is any real number (rational or irrational). In our computations
we will assume that x” is a differentiable function and that the familiar laws of exponents
hold for real exponents.
Let y = x”, where r is a real number. The derivative dy/dx can be obtained by loga-
rithmic differentiation as follows:

In|y] =In|x"| =rln|x|

d[lnl 1= d[ In |x|]
dx Y _dxr *

ldy r
ydx  x
dy r ro, r—1
_—= —y = —X =rX
dx x X
v QUICK CHECK EXERCISES 3.2  (See page 196 for answers.)
1. The equation of the tangent line to the graph of y = Inx at 3. Use logarithmic differentiation to find the derivative of
— 2
2 ; _diz 1/Sar Fx) il
. Find dy/dx. X) =3
(a) y = In3x (b) y=In/x vr -1
— In(1
(©) y = log(1/Ix]) 4t MOER
h—0 h
EXERCISE SET 3.2
1-26 Find dy/dx. 13. y=xInx 4. y=x’Inx
1. y=1In5x 2. y= ln§ 15. y =x2 log, (3 — 2x) 16. y = x[logz()c2 207
x2 log x
3. y=In|l +x| 4. y =In(2 + /x) 17. y= ——— 18 y= —2°—
5. y=1Inlx— 1| 6. y=In|x®—7x2 — 3| I+ logx I+ logx
I ¥ N 1+x 19. y = In(Inx) 20. y = In(In(In x))
Y= T -y =TT 21. y = In(tan x) 22. y = In(cos x)
9. y =Inx2 10. y = (Inx)? 23. y = cos(Inx) 24. y = sin?(Inx)
11. y = /Inx 12. y=In/x 25. y = log(sin® x) 26. y = log(l — sin?x)
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27-30 Use the method of Example 3 to help perform the indi-
cated differentiation.

27. i[1n((x — D3+ DY)
dx
28. %[ln((cos2 V14 x9]

29. d |:1n

cos x 30 d I x—1
— —_ . — |In
dx V4 — 3x2 dx x+1

31-34 True-False Determine whether the statement is true or

false. Explain your answer.

31. The slope of the tangent line to the graph of y =Inx at
x = a approaches infinity as a — 0.

32. If lim, _, 4o, f'(x) =0, then the graph of y = f(x) has a
horizontal asymptote.

33. The derivative of In |x| is an odd function.

34. We have

d o d 2
E((lnx) ) = E(Z(lnx)) =7

35-38 Find dy/dx using logarithmic differentiation.

1
35. y =x T+ 2 36. y = ‘5/x+1
X

2_81/3 3 1
37,y XY Vel

sin x cos x tan> x

x6—Tx+5 Jx
39. Find
@ Llog, el ® Liog. 2]
a) ——llog, e 7 Hog, 21,
40. Find .
@ - log /0 ¢l ®) - lloggn. el

41-44 Find the equation of the tangent line to the graph of
y = f(x)atx = xg.

41. f(x)=1Inx; xg=e"!
43. f(x) =In(—x); xo = —e

FOCUS ON CONCEPTS

45. (a) Find the equation of a line through the origin that is
tangent to the graph of y = Inx.
(b) Explain why the y-intercept of a tangent line to
the curve y =Inx must be 1 unit less than the
y-coordinate of the point of tangency.

42. f(x) =logx; xo =10
44. f(x) =In|x|; xo = -2

46. Use logarithmic differentiation to verify the product and
quotient rules. Explain what properties of In x are im-
portant for this verification.

47. Find a formula for the area A(w) of the triangle bounded by
the tangent line to the graph of y = Inx at P(w, Inw), the
horizontal line through P, and the y-axis.

l/ QUICK CHECK ANSWERS 3.2

48. Find a formula for the area A(w) of the triangle bounded
by the tangent line to the graph of y = Inx? at P(w, In w?),
the horizontal line through P, and the y-axis.

49. Verify that y = In(x + e) satisfiesdy/dx = e, withy = 1
when x = 0.

50. Verify that y = —In(e> — x) satisfies dy/dx = e”, with
y =—2whenx =0.

51. Findafunction f suchthaty = f(x) satisfiesdy/dx = e™,
with y = 0 when x = 0.

52. Find a function f such that y = f(x) satisfies dy/dx = e”,
with y = —In2 when x = 0.

53-55 Find the limit by interpreting the expression as an ap-
propriate derivative.

In(1+3 In(1 -5
53. (a) lim m (b) lim u
x—0 X x—0 X
In(e? + Ax) —2 I
54, (@) lLim MEFAD T2 G0, 0w
Ax—0 Ax w—1w — 1
1 1+h)V2—1
55. (a) lim In(cos x) (b) lim a+m¥ -1
x—0 h—0 h

56. Modify the derivation of Equation (2) to give another proof
of Equation (3).

57. Let p denote the number of paramecia in a nutrient solution
t days after the start of an experiment, and assume that p is
defined implicitly as a function of ¢ by the equation

0=1np+0.83 —In(2.3 — 0.0046p) — 2.3¢

Use implicit differentiation to show that the rate of change
of p with respect to ¢ satisfies the equation

dp
== 0.0046 p(500 — p)

58. Let p denote the population of the United States (in mil-
lions) in the year ¢, and assume that p is defined implicitly
as a function of 7 by the equation

0 =1Inp +45.817 — In(2225 — 4.2381 p) — 0.02225¢

Use implicit differentiation to show that the rate of change
of p with respect to ¢ satisfies the equation

d

dit’ = 1075p(2225 — 4.2381p)

59. Writing Review the derivation of the formula

d [Inx] 1
Z nx] = —
dx * X

and then write a paragraph that discusses all the ingredients
(theorems, limit properties, etc.) that are needed for this
derivation.

60. Writing Write a paragraph that explains how logarithmic
differentiation can replace a difficult differentiation compu-
tation with a simpler computation.

x dy 1 __dy 1 _d 1 NCES U 1
Ly=2+41 2.0 2= Z=—(© Z-- . - 4.1
e dx x dx 2x dx xIn10 Ix—1[12(x+1) 3(x-—1)
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E DERIVATIVES OF EXPONENTIAL AND INVERSE TRIGONOMETRIC FUNCTIONS

See Section 0.4 for a review of one-to-

one functions and inverse functions.

y
. Slope = 1/f'(2)

y=17(x) ¢

3 ‘/ //y =X
s
//Slope =1'(2)
a2/
N4
X
i N y=1f(x)
S 21
s
s
/ ! ! !
s 1 2 3
s
s
A Figure 3.3.1
Y
B

/

A Figure 3.3.2 The graph of an
increasing function (blue) or a
decreasing function (purple) is cut at
most once by any horizontal line.

In this section we will show how the derivative of a one-to-one function can be used to
obtain the derivative of its inverse function. This will provide the tools we need to obtain
derivative formulas for exponential functions from the derivative formulas for logarithmic
functions and to obtain derivative formulas for inverse trigonometric functions from the
derivative formulas for trigonometric functions.

Our first goal in this section is to obtain a formula relating the derivative of the inverse
function f~! to the derivative of the function f.

» Example T Suppose that f is a one-to-one differentiable function such that f(2) = 1
and f'(2) = %. Then the tangent line to y = f(x) at the point (2, 1) has equation

y—l=3i(x-2)

The tangent line to y = f~!(x) at the point (1, 2) is the reflection about the line y = x
of the tangent line to y = f(x) at the point (2, 1) (Figure 3.3.1), and its equation can be
obtained by interchanging x and y:
x=1=3(y-2) o y—-2=3%x-1
Notice that the slope of the tangent line to y = f~'(x) at x = 1 is the reciprocal of the
slope of the tangent line to y = f(x) at x = 2. That is,
—2 < ey

f@ 3

Since 2 = f~!(1) for the function f in Example 1, it follows that f'(2) = f’(f’l(l)).
Thus, Formula (1) can also be expressed as

FHa =

—1y/ 1) =
(0 fOHa)
In general, if f is a differentiable and one-to-one function, then
e = _ (2)
I ECIC)))

provided f'(f~'(x)) # 0.
Formula (2) can be confirmed using implicit differentiation. The equation y = f~'(x)
is equivalent to x = f(y). Differentiating with respect to x we obtain

d d dy
1 = — = — = 4 J——
=Dl = F o) 2
so that dy 1 1

dx — f'») (@)
Also from x = f(y) we have dx/dy = f'(y), which gives the following alternative version
of Formula (2):

dy 1

dx _ dx/dy 3)

INCREASING OR DECREASING FUNCTIONS ARE ONE-TO-ONE
If the graph of a function f is always increasing or always decreasing over the domain of
f, then a horizontal line will cut the graph of f in at most one point (Figure 3.3.2), so f
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In general, once it is established that
£~ is differentiable, one has the op-
tion of calculating the derivative of £~!
using Formula (2) or (3), or by differen-
tiating implicitly, as in Example 2.

must have an inverse function (see Section 0.4). We will prove in the next chapter that f is
increasing on any interval on which f’(x) > 0 (since the graph has positive slope) and that
f is decreasing on any interval on which f'(x) < O (since the graph has negative slope).
These intuitive observations, together with Formula (2), suggest the following theorem,
which we state without formal proof.

3.3.1 THEOREM Suppose that the domain of a function f is an open interval on
which f'(x) > 0 or onwhich f'(x) < 0. Then f is one-to-one, f~'(x) is differentiable
at all values of x in the range of f, and the derivative of f~'(x) is given by Formula (2).

» Example 2 Consider the function f(x) = x> + x + 1.

(a) Show that f is one-to-one on the interval (—oo, +©).
(b) Find a formula for the derivative of f~!.

(c) Compute (f~1)(1).

Solution (a). Since , A
ffx)=5x"+1>0

for all real values of x, it follows from Theorem 3.3.1 that f is one-to-one on the interval
(—OC, +OO)'

Solution (b). Lety = f~'(x). Differentiating x = f(y) = y> + y + | implicitly with
respect to x yields d

[x] d[5+ +1]
= =
dx dxy Y

d
=6y + D5

dy 1

a2 4
dx  5y*+1 @)

We cannot solve x = y° + y 4 1 for y in terms of x, so we leave the expression for dy/dx
in Equation (4) in terms of y.

Solution (c). From Equation (4),

1

—1y/ _ EX _
o )(1)_dx LS+

xX= ’x:l

Thus, we need to know the value of y = f~!(x) at x = 1, which we can obtain by solving

the equation f(y) = 1 for y. This equation is y°> 4+ y 4+ 1 = 1, which, by inspection, is
satisfied by y = 0. Thus,

=1 «
y=0

(fFH'a =

S5y +1

DERIVATIVES OF EXPONENTIAL FUNCTIONS
Our next objective is to show that the general exponential function b* (b > 0,b # 1) is
differentiable everywhere and to find its derivative. To do this, we will use the fact that



How does the derivation of Formula (5)
changeif 0 < b < 1?

In Section 0.5 we stated that b = e is
the only base for which the slope of the
tangent line to the curve y = b* atany
point P on the curve is the y-coordin-
ate at P (see page 54). Verify this state-
ment.

It is important to distinguish between
differentiating an exponential function
b* (variable exponent and constant
base) and a power function x” (vari-
able base and constant exponent). For
example, compare the derivative

4 12 =2
— X = X
dx

to the derivative of 2* in Example 3.
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b* is the inverse of the function f(x) =log,x. We will assume that b > 1. With this
assumption we have Inb > 0, so

d 1
f'(x) = —[log, x] = —— > 0 forall x in the interval (0, +oo)
dx xInb

It now follows from Theorem 3.3.1 that f~!(x) = b* is differentiable for all x in the range
of f(x) = log, x. But we know from Table 0.5.3 that the range of log, x is (—o, 40), so
we have established that b* is differentiable everywhere.

To obtain a derivative formula for b* we rewrite y = b* as

x =log,y
and differentiate implicitly using Formula (5) of Section 3.2 to obtain
1| — 1 dy
" ylnb dx

Solving for dy/dx and replacing y by b* we have

dy

— =ylnb=>b"Inb

dx

Thus, we have shown that y
—[b* ]=b"Inb (@)
dx

In the special case where b = e we have Ine = 1, so that (5) becomes

%[ex] =e (6)

Moreover, if u is a differentiable function of x, then it follows from (5) and (6) that

d d d
4 and —[e"]=¢€"- 4

d
—[b"]=b"1Inb-
dx dx dx dx

(7-8)

» Example 3 The following computations use Formulas (7) and (8).

d

—[2']=2"In2

2] n

d d

5[6—2)(] — e—2X . 5[_2)6] — _Ze—2x

d sy od

E[ =o' E[f] = 3x%e"

d [ COSX] __ ,Cosx d [ ]_ ( in ) COos x <
dxe =e dxCOS)C— sSmx)e

Functions of the form f(x) = u#" in which u and v are nonconstant functions of x are
neither exponential functions nor power functions. Functions of this form can be differen-
tiated using logarithmic differentiation.

_ d .
» Example 4 Use logarithmic differentiation to find d—[()c2 + ¥,
x

Solution. Setting y = (x> 4+ 1)*"* we have

Iny = In[(x* + 1)*"*] = (sinx) In(x*> + 1)
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Observe that sin~! x is only differen-

tiable on the interval (—1, 1), even
though its domain is [—1, 1]. This is
because the graph of y =sinx has
horizontal tangent lines at the points
(n/2,1) and (—m/2,—1), so the
graph of y = sin~! x has vertical tan-
gent lines at x = £1.

1
X
sinx
1-x?
cog(sintx) = V1 —x?
A Figure 3.3.3

Differentiating both sides with respect to x yields
ldy

- i[(' ) In(x* + 1]
ydx dx Sin x) In(x

= (sinx)xz;H(Zx) + (cosx) In(x> + 1)

Thus,

d 2x si
ﬁ =y |: xxzs:llx + (cos x) ln(x2 + 1)i|

2x sin x

= (x2 4 1)sin¥ [ e + (cosx) In(x? + 1)] <

DERIVATIVES OF THE INVERSE TRIGONOMETRIC FUNCTIONS
To obtain formulas for the derivatives of the inverse trigonometric functions, we will need
to use some of the identities given in Formulas (11) to (17) of Section 0.4. Rather than
memorize those identities, we recommend that you review the “triangle technique” that we
used to obtain them.

To begin, consider the function sin~! x. If we let f(x) = sinx (—/2 < x < 7/2), then
it follows from Formula (2) that f~'(x) = sin~!' x will be differentiable at any point x
where cos(sin~! x) # 0. This is equivalent to the condition

_ i _ (4
_Z d -
sin” ' x # > and sin x;éz
so it follows that sin~! x is differentiable on the interval (—1, 1).
A derivative formula for sin~! x on (—1, 1) can be obtained by using Formula (2) or
(3) or by differentiating implicitly. We will use the latter method. Rewriting the equation
y = sin~!x as x = sin y and differentiating implicitly with respect to x, we obtain

d[]—d[' ]
ax—d—xsmy

1=cosy-d—y
X

dy 1 1

1

dx cosy  cos(sin”' x)

At this point we have succeeded in obtaining the derivative; however, this derivative formula
can be simplified using the identity indicated in Figure 3.3.3. This yields

dy 1

dx V1 —x2
Thus, we have shown that

1
-1

—[sin” x] = ——
dx [ ] V1= x2
More generally, if u is a differentiable function of x, then the chain rule produces the

following generalized version of this formula:
d [ .1 ] 1 du
—[sin” U] = ——
dx V1 —u2dx
The method used to derive this formula can be used to obtain generalized derivative formulas
for the remaining inverse trigonometric functions. The following is a complete list of these

(—l<x<1

(—l<u<l
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formulas, each of which is valid on the natural domain of the function that multiplies

du/dx.
E[sin—l u] = ﬁj—z %[cos_l ul = _ﬁ% (9-10)
i[tan—1 ul = I du i[cot_l ul = _ L du (11-12)
dx 14+ u?dx dx 1+ u?dx
The appearance of |u| in (13) and (14) _1 du d _1 1 du
will be explained in Exercise 64. oy e = i —Ldx oy e = TR ldx (13-14)

» Example 5 Finddy/dx if

Solution (a). From (9)

Solution (b). From (13)

t/ QUICK CHECK EXERCISES 3.3

(@) y=sin"'(x")

(b) y =sec”'(e")

(See page 203 for answers.)

1. Suppose that a one-to-one function f has tangent line
y = 5x + 3 at the point (1, 8). Evaluate (f~')'(8).

2. In each case, from the given derivative, determine whether
the function f is invertible.
(@ f'(x)=x*+1
(¢) f'(x) =sinx

) fir)=x>—1
@ f(x) = g ftan'x

EXERCISE SET 3.3 I Graphing Utility

1 3x2
= 3=
,/1—(x3)2(X) V1 —x°
1 1
D () =
er /(ex)Z -1 m
3. Evaluate the derivative.
(a) i[ ] (b) i[7"]
a dx ¢ dx
d X i 3x—2
(©) E[COS(&’ + D] () I [e 7]

4. Let f(x) = e Use f'(x) to verify that f is one-to-one.

FOCUS ON CONCEPTS

1. Let f(x) = x° +x3 4+ x.
(a) Show that f is one-to-one and confirm that f(1) = 3.
(b) Find (f7'(3).

2. Let f(x) = x> 4 2¢*.
(a) Show that f is one-to-one and confirm that f(0) = 2.
(b) Find (f7)'(2).

3-4 Find (f~')'(x) using Formula (2), and check your answer
by differentiating £~ directly.

3. f(x)=2/(x+3) 4. f(x) =In2x + 1)

5-6 Determine whether the function f is one-to-one by exam-
ining the sign of f'(x).

5.(a) f(x)=x2+8x+1
b)) f(x)=2x>+x3+3x+2
(¢) f(x) =2x +sinx
@ fxy=(3)"
6. (@) f(x)=x>+3x>2-38
(b) flx)=x>+8x*+2x -1
X
(©) fx)= Tl

(d) f(x)=log,x, O0<b<l1
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7-10 Find the derivative of f~' by using Formula (3), and
check your result by differentiating implicitly.

7. f(x) =5x3+x -7 8. f(x)=1/x2, x>0
9. f(x) =2x>+x34+1

. b4 T
10. f(x) = 5x — sin2x, —7 <x< -

4
FOCUS ON CONCEPTS

11. Figure 0.4.8 is a “proof by picture” that the reflection of
apoint P(a, b) about the line y = x is the point Q (b, a).
Establish this result rigorously by completing each part.
(a) Prove thatif P is not on the line y = x, then P and
Q are distinct, and the line @ is perpendicular to
the line y = x.

(b) Prove thatif P is not on the line y = x, the midpoint
of segment PQ is on the line y = x.

(c) Carefully explain what it means geometrically to
reflect P about the line y = x.

(d) Use the results of parts (a)—(c) to prove that Q is the
reflection of P about the line y = x.

12. Prove that the reflection about the line y = x of a line
with slope m, m # 0, is a line with slope 1/m. [Hint:
Apply the result of the previous exercise to a pair of
points on the line of slope m and to a corresponding
pair of points on the reflection of this line about the line
y=x]

13. Suppose that f and g are increasing functions. De-
termine which of the functions f(x) + g(x), f(x)g(x),
and f(g(x)) must also be increasing.

14. Suppose that f and g are one-to-one functions. De-
termine which of the functions f(x) + g(x), f(x)g(x),
and f(g(x)) must also be one-to-one.

15-26 Find dy/dx.

15. y =™ 16. y =5
17. y = X3€X 18. y= el/x
ef —e* ) .
19. y = gy 20. y = sin(e*)
eX
21. y — extanx 22. y —
Inx
23 y =0 24. y = exp(v/1+5x3)
25. y=In(1 —xe™) 26. y = In(cos e*)

27-30 Find f’(x) by Formula (7) and then by logarithmic dif-
ferentiation.

27. f(x) =2°
29, f(x) = msinx

28. f(x) =3*
30. f(x) — gXtanx

31-35 Find dy/dx using the method of logarithmic differenti-
ation.

3Ly = (x3 —2x)ln¥ 32. y = xsinx

33. y = (Inx)®* 34, y = (x2 4 3)nx
35. y = (Inx)"*

36. (a) Explain why Formula (5) cannot be used to find
(d/dx)[x*].
(b) Find this derivative by logarithmic differentiation.

37-42 Find dy/dx using any method.

37. y = (3 = 2x2 + )" 38. y = (2x% —2x + D)e*
39. y = (22 4+ Jx)3* 40. y = (x3 + Jx)5°

41. y = 43 sinx—e* 42. y = zcosx+lnx

43-58 Find dy/dx.

1
43. y =sin~!(3x) 44. y = cos™! <%>
45. y =sin~'(1/x) 46. y = cos™!(cos x)
47. y =tan"!(x?) 48. y =sec” ' (x?)
1

49. y = (tanx)~! 50. y=—+—

tan™ " x
51. y=¢" sec !l x 52. y= In(cos™! x)

53. y= sin~! x + cos™! x 54. y = xz(sin’l x)3
55. y=sec !x+csc'x  56. y =csc7l(eY)

57. y = cot™! (/%) 58. y = +cot™!x

59-62 True-False Determine whether the statement is true or
false. Explain your answer.

59. If a function y = f(x) satisfies dy/dx = y, then y = e*.

60. If y = f(x) is a function such that dy/dx is a rational func-
tion, then f(x) is also a rational function.
d
61. —(lo = —
ax o8 KD =
62. We can conclude from the derivatives of sin™
that sin™! x + cos™! x is constant.

63. (a) Use Formula (2) to prove that

1 1

xandcos™' x

d -1
[cot™ x] =-1
dx x=0

(b) Use part (a) above, part (a) of Exercise 50 in Section
0.4, and the chain rule to show that

d [cot! x] 1
—[cot™ x] = —
dx 1+ x2
for —o < x < 4o0.
(c) Conclude from part (b) that
d ) 1 du
—[cot™ u]l = — —
dx 1+ u?dx

for —o < u < 4o,
64. (a) Use part (c) of Exercise 50 in Section 0.4 and the chain
rule to show that
d ) 1
—[csc™ x]

dx RTINS

for 1 < |x]|. (cont.)
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(b) Conclude from part (a) that
d 1 du
ul

dx 5¢ |u|4/u2— 1dx
for 1 < |ul.
(c) Use Equation (11) in Section 0.4 and parts (b) and (c) of
Exercise 50 in that section to show that if |x| > 1, then
sec™! x 4+ csc™! x = /2. Conclude from part (a) that

1
—[sec” x] = —————
dx |x|/x2 — 1

(d) Conclude from part (c) that

lx]

_ 1 du
lulv/x2 —1dx

a -1
I [sec™ " u]

65-66 Find dy/dx by implicit differentiation.

65. x>+ xtan"ly = ¢

66. sin~!(xy) = cos~'(x — y)

67. (a) Show that f(x) = x> — 3x2 4 2x is not one-to-one on

(=00, 400).
(b) Find the largest value of k such that f is one-to-one on
the interval (—k, k).

68. (a) Show that the function f(x) = x* — 2x is not one-to-

one on (—oo, +o0).
(b) Find the smallest value of k such that f is one-to-one
on the interval [k, +o0).

69. Letf(x)=x4+x3+1,0§x§2.

(a) Show that f is one-to-one.
(b) Let g(x) = f~!(x) and define F(x) = f(2g(x)). Find
an equation for the tangent line to y = F(x) at x = 3.

exp(4 — x?)

70. Let f(x) = ———,x > 0.
x

(a) Show that f is one-to-one.
(b) Let g(x) = f~'(x) and define F(x) = f([g(x)]").
Find F’ ().

71. Show that for any constants A and k, the function y = Ae*’

satisfies the equation dy/dt = ky.

72. Show that for any constants A and B, the function

73

74

y = Ae2x +B€74X
satisfies the equation
y//+2y/_8y:0
. Show that
(a) y = xe~" satisfies the equation xy’ = (1 — x)y
(b) y = xe /2 satisfies the equation xy’ = (I — x2)y.
. Show that the rate of change of y = 100e~02*
to x is proportional to y.

with respect

l/ QUICK CHECK ANSWERS 3.3

75.

I~ 76.

Suppose that the percentage of U.S. households with broad-
band Internet access is modeled by the equation
5300
53 4 47¢—0.1821
where P (t) is the percentage ¢ years after an initial survey
result made in the year 2007.
(a) Use a graphing utility to graph the function P (z).
(b) In words, explain what happens to the percentage over
time. Check your conclusion by finding lim, _, .. P(¢).
(c) Inwords, what happens to the rate of population growth
over time? Check your conclusion by graphing P’(t).

P(t) =

Suppose that the population of oxygen-dependent bacteria
in a pond is modeled by the equation
60
S5+ Te!
where P(t) is the population (in billions) ¢ days after an
initial observation at time ¢t = 0.
(a) Use a graphing utility to graph the function P(z).
(b) In words, explain what happens to the population over
time. Check your conclusion by finding lim, _, . P(¢).
(c) Inwords, what happens to the rate of population growth
over time? Check your conclusion by graphing P’(z).

P(t) =

77-82 Find the limit by interpreting the expression as an ap-
propriate derivative.

77.

79.

81.

82.
83.

3x 1 2y 1
lim & 78, lim 200D 1
x—0 X x—0 X
10" — 1 tan~'(1 + h) — /4
lim 80. fim 2 +m -7/
h—0 h h—0 h
2
9 [Sin’1 (‘? + Ax)] — 72
lim
Ax—0 Ax
o 3sectw—m
lim
w—2 w—2
Suppose that a steel ball bearing is released within a vat of

fluid and begins to sink. According to one model, the speed
v(t) (in m/s) of the ball bearing ¢ seconds after its release
is given by the formula

_98
v(t)_T( —e)

where k is a positive constant that corresponds to the resis-
tance the fluid offers against the motion of the bearing. (The
smaller the value of k, the weaker will be the resistance.)
For ¢ fixed, determine the limiting value of the speed as
k— 0%, and give a physical interpretation of the limit.

1 2. (a) yes (b) no (c) no (d) yes
f'x) = errE (Bx%2+1) > 0 forall x

3. (@) ¢* (b) 7'In7 (c) —e*sin(e’ + 1) (d) 3e>2
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m RELATED RATES

> Figure 3.4.1

In this section we will study related rates problems. In such problems one tries to find the
rate at which some quantity is changing by relating the quantity to other quantities whose
rates of change are known.

B DIFFERENTIATING EQUATIONS TO RELATE RATES

Figure 3.4.1 shows a liquid draining through a conical filter. As the liquid drains, its
volume V, height %, and radius r are functions of the elapsed time ¢, and at each instant
these variables are related by the equation

V =rh
3
If we were interested in finding the rate of change of the volume V with respect to the time
t, we could begin by differentiating both sides of this equation with respect to ¢ to obtain

dv  mw[ ,dh dr w( ,dh dr
— == |rr—4h|2r—||=2|r"—+2rh—
dt 3[ dr+ <rdt)} 3<r altJr : dt)

Thus, to find dV /dt at a specific time ¢ from this equation we would need to have values
for r, h, dh/dt, and dr/dt at that time. This is called a related rates problem because the
goal is to find an unknown rate of change by relating it to other variables whose values and
whose rates of change at time ¢ are known or can be found in some way. Let us begin with
a simple example.

» Example 1 Suppose that x and y are differentiable functions of ¢ and are related by
the equation y = x>. Find dy/dt attime t = 1 if x = 2 and dx/dt = 4 at time t = 1.

Solution. Using the chain rule to differentiate both sides of the equation y = x> with

respect to ¢ yields
dy d 4 ,dx
— = —[x7] =3x"—
dt dt dt

Thus, the value of dy/dr at time r = 1 is

dy

dt

, dx
=312)" — =12-4=48 «
dt

t=1

t=1



Arni Katz/Phototake
Oil spill from a ruptured tanker.

Oil
spill

A Figure 3.4.2

WARNING

We have italicized the word “After” in
Step 5 because it is a common error
to substitute numerical values before
performing the differentiation. For in-
stance, in Example 2 had we substi-
tuted the known value of r = 60 in (1)
before differentiating, we would have
obtained dA/dt =0, which is obvi-
ously incorrect.
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» Example2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern
whose radius increases at a constant rate of 2 ft/s. How fast is the area of the spill increasing
when the radius of the spill is 60 ft?

Solution. Let

t = number of seconds elapsed from the time of the spill
r = radius of the spill in feet after ¢ seconds
A = area of the spill in square feet after 7 seconds

(Figure 3.4.2). We know the rate at which the radius is increasing, and we want to find the
rate at which the area is increasing at the instant when r = 60; that is, we want to find

dA

. dr
— given that — =2 ft/s
dt |,_eo dt

This suggests that we look for an equation relating A and r that we can differentiate with
respect to ¢ to produce a relationship between dA/dt and dr/dr. But A is the area of a

circle of radius r, so
A =mr? (1)

— =2 — @)

Thus, when » = 60 the area of the spill is increasing at the rate of

dA
- = 27(60)(2) = 2407 ft*/s ~ 754 ft*/s <
r=60

With some minor variations, the method used in Example 2 can be used to solve a variety
of related rates problems. We can break the method down into five steps.

A Strategy for Solving Related Rates Problems

Step 1. Assign letters to all quantities that vary with time and any others that seem
relevant to the problem. Give a definition for each letter.

Step 2. Identify the rates of change that are known and the rate of change that is to be
found. Interpret each rate as a derivative.

Step 3. Find an equation that relates the variables whose rates of change were identified
in Step 2. To do this, it will often be helpful to draw an appropriately labeled
figure that illustrates the relationship.

Step 4. Differentiate both sides of the equation obtained in Step 3 with respect to time
to produce a relationship between the known rates of change and the unknown
rate of change.

Step 5. After completing Step 4, substitute all known values for the rates of change and
the variables, and then solve for the unknown rate of change.
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2nd

ﬁs/

3rd Ist
90 ft

Home
A Figure 3.4.3

The quantity

dx
dt x=20

is negative because x is decreasing
with respect to 7.

Home
A Figure 3.4.4

Rocket

Elevation
angle

|«——3000 ft ——
Camera Launching
pad

A Figure 3.4.5

» Example 3 A baseball diamond is a square whose sides are 90 ft long (Figure 3.4.3).
Suppose that a player running from second base to third base has a speed of 30 ft/s at the
instant when he is 20 ft from third base. At what rate is the player’s distance from home
plate changing at that instant?

Solution. We are given a constant speed with which the player is approaching third base,
and we want to find the rate of change of the distance between the player and home plate at
a particular instant. Thus, let

t = number of seconds since the player left second base
x = distance in feet from the player to third base
y = distance in feet from the player to home plate

(Figure 3.4.4). Thus, we want to find

d d
el given that il = —30ft/s
dt |,y dt |,y

As suggested by Figure 3.4.4, an equation relating the variables x and y can be obtained
using the Theorem of Pythagoras:

x? 490% = y? (3)

Differentiating both sides of this equation with respect to ¢ yields

dx dy
2x— =2y—=
* dt ydt
from which we obtain
dy xdx
==t “
dt ydt

When x = 20, it follows from (3) that
y =+4/20% + 90?2 = v/8500 = 10+/85
so that (4) yields
dy 20 60
— = ——(-30) = ——— ~ —6.51 ft/s
di |,_5y  104/85 V85

The negative sign in the answer tells us that y is decreasing, which makes sense physically
from Figure 3.4.4. «

» Example 4 InFigure 3.4.5 we have shown a camera mounted at a point 3000 ft from
the base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is
4000 ft above the launching pad, how fast must the camera elevation angle change at that
instant to keep the camera aimed at the rocket?

Solution. Let

t = number of seconds elapsed from the time of launch
¢ = camera elevation angle in radians after ¢t seconds
h = height of the rocket in feet after # seconds

(Figure 3.4.6). At each instant the rate at which the camera elevation angle must change



Rocket
h
¢
|«——— 3000 ft 4>‘
Camera
A Figure 3.4.6
5000 4000
‘\<1>
3000
A Figure 3.4.7
4cm
e S
! r
I 16 cm
y
Funnel to l
hold filter —
A Figure 3.4.8
>

4—

V

The same volume has drained, but
the change in height is greater near
the bottom than near the top.

A Figure 34.9
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is d¢/dt, and the rate at which the rocket is rising is dh/dt. We want to find

d dh
¢ given that — = 880 ft/s
dt {4000 ! | h=4000
From Figure 3.4.6 we see that h
t = — 5
M9 = 3500 ®)
Differentiating both sides of (5) with respect to ¢ yields
do 1 dh
24y - 6
(SeC°®) 3t = 3000 ar 2
When & = 4000, it follows that
5000 5
(sec ¢)|h:4000 ~ 3000 3
(see Figure 3.4.7), so that from (6)
5\*d 1 22
AN - .830=22
3/) dt 3000 75
h=4000
d 22 9 66
a9 =—.—=——~0.11rad/s ~ 6.05 deg/s <«
df a0 75 25 625

» Example 5 Suppose that liquid is to be cleared of sediment by allowing it to drain
through a conical filter that is 16 cm high and has a radius of 4 cm at the top (Figure 3.4.8).
Suppose also that the liquid is forced out of the cone at a constant rate of 2 cm?/min.

(a) Do you think that the depth of the liquid will decrease at a constant rate? Give a verbal
argument that justifies your conclusion.

(b) Find a formula that expresses the rate at which the depth of the liquid is changing in
terms of the depth, and use that formula to determine whether your conclusion in part
(a) is correct.

(c) At what rate is the depth of the liquid changing at the instant when the liquid in the
cone is 8 cm deep?

Solution (a). For the volume of liquid to decrease by a fixed amount, it requires a greater
decrease in depth when the cone is close to empty than when it is almost full (Figure 3.4.9).
This suggests that for the volume to decrease at a constant rate, the depth must decrease at
an increasing rate.

Solution (b). Let

t = time elapsed from the initial observation (min)
V = volume of liquid in the cone at time 7 (cm?)

y = depth of the liquid in the cone at time ¢ (cm)

r = radius of the liquid surface at time ¢ (cm)

(Figure 3.4.8). At each instant the rate at which the volume of liquid is changing is dV /dt,
and the rate at which the depth is changing is dy/dt. We want to express dy/dt in terms of
y given that dV /dt has a constant value of dV /dt = —2. (We must use a minus sign here
because V decreases as t increases.)

From the formula for the volume of a cone, the volume V/, the radius r, and the depth y

are related by V= % iy (7
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If we differentiate both sides of (7) with respect to ¢, the right side will involve the quantity
dr/dt. Since we have no direct information about dr/dt, it is desirable to eliminate » from
(7) before differentiating. This can be done using similar triangles. From Figure 3.4.8 we

see that

Substituting this expression in (7) gives

r 4 1
—_ = or — —
y 16 T
T
V= 8
13 ®)

Differentiating both sides of (8) with respect to ¢ we obtain

or

dy

and

o=

av T ,dy
dt 48 dt

16 dV 16 32
idr = D= ©
which expresses dy/dt in terms of y. The minus sign tells us that y is decreasing with time,
dy 32
dar|” my?

tells us how fast y is decreasing. From this formula we see that |dy/dt| increases as y de-
creases, which confirms our conjecture in part (a) that the depth of the liquid decreases more
quickly as the liquid drains through the filter.

Solution (c).

dy
dt y=8

I/ QUICK CHECK EXERCISES 3.4

O

(See page 211 for answers.)

The rate at which the depth is changing when the depth is 8 cm can be
obtained from (9) with y = 8:

32 1
— ~ —0.16 cm/min <«

d dA
LIfA=x2and 28 =3, find 22
dr dar |
dA d
2. IfA=x2and & =3, find &
dr dr |y

3. A 10-foot ladder stands on a horizontal floor and leans
against a vertical wall. Use x to denote the distance along
the floor from the wall to the foot of the ladder, and use y
to denote the distance along the wall from the floor to the

EXERCISE SET 3.4

top of the ladder. If the foot of the ladder is dragged away
from the wall, find an equation that relates rates of change
of x and y with respect to time.

4. Suppose that a block of ice in the shape of a right circular

cylinder melts so that it retains its cylindrical shape. Find
an equation that relates the rates of change of the volume
(V), height (h), and radius (r) of the block of ice.

1-4 Both x and y denote functions of ¢ that are related by the
given equation. Use this equation and the given derivative in-
formation to find the specified derivative.

1. Equation: y = 3x + 5.

(a) Given that dx/dt =2, find dy/dt when x = 1.
(b) Given that dy/dt = —1, find dx/dt when x = 0.

2. Equation: x 44y = 3.

(a) Given thatdx/dt = 1, find dy/dt when x = 2.
(b) Given that dy/dt = 4, find dx/dt when x = 3.

3. Equation: 4x? +9y? = 1.

(a) Given that dx/dt = 3, find dy/dt when
— (L _1
(.X, y) - <2ﬁ7 3«/5)

(cont.)



(b) Given that dy/dt = 8, find dx/dt when
(x.y) = (% —?)
4. Equation: x? + y? = 2x + 4y.
(a) Given that dx/dt = —5, find dy/dt when
(x,y)=@G, D).
(b) Given that dy/dt = 6, find dx/dt when
(x,y) = (1++/2,2++/3).

FOCUS ON CONCEPTS

5. Let A be the area of a square whose sides have length

x, and assume that x varies with the time 7.

(a) Draw a picture of the square with the labels A and
x placed appropriately.

(b) Write an equation that relates A and x.

(c) Use the equation in part (b) to find an equation that
relates dA/dt and dx/dt.

(d) At a certain instant the sides are 3 ft long and in-
creasing at a rate of 2 ft/min. How fast is the area
increasing at that instant?

6. In parts (a)—(d), let A be the area of a circle of radius r,

and assume that r increases with the time .

(a) Draw a picture of the circle with the labels A and r
placed appropriately.

(b) Write an equation that relates A and r.

(c) Use the equation in part (b) to find an equation that
relates dA/dt and dr/dt.

(d) Ata certain instant the radius is 5 cm and increasing
at the rate of 2 cm/s. How fast is the area increasing
at that instant?

7. Let V be the volume of a cylinder having height 4 and
radius r, and assume that /4 and r vary with time.

(a) How are dV /dt, dh/dt, and dr/dt related?

(b) Ata certain instant, the height is 6 in and increasing
at 1 in/s, while the radius is 10 in and decreasing
at 1 in/s. How fast is the volume changing at that
instant? Is the volume increasing or decreasing at
that instant?

8. Let [ be the length of a diagonal of a rectangle whose
sides have lengths x and y, and assume that x and y vary
with time.

(a) How are dl/dt, dx/dt, and dy/dt related?

(b) If x increases at a constant rate of % ft/s and y de-
creases at a constant rate of % ft/s, how fast is the
size of the diagonal changing when x = 3 ft and
y =4 ft? Is the diagonal increasing or decreasing
at that instant?

9. Let 6 (in radians) be an acute angle in a right triangle,
and let x and y, respectively, be the lengths of the sides
adjacent to and opposite 8. Suppose also that x and y
vary with time.

(a) How are d6/dt, dx/dt, and dy/dt related?
(b) Ata certain instant, x = 2 units and is increasing at
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1 unit/s, while y = 2 units and is decreasing at %
unit/s. How fast is § changing at that instant? Is 6
increasing or decreasing at that instant?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Suppose that z = x3y?, where both x and y are changing
with time. At a certain instant when x = 1 and y = 2, x is
decreasing at the rate of 2 units/s, and y is increasing at the
rate of 3 units/s. How fast is z changing at this instant? Is
z increasing or decreasing?

The minute hand of a certain clock is 4 in long. Starting
from the moment when the hand is pointing straight up,
how fast is the area of the sector that is swept out by the
hand increasing at any instant during the next revolution of
the hand?

A stone dropped into a still pond sends out a circular ripple
whose radius increases at a constant rate of 3 ft/s. How
rapidly is the area enclosed by the ripple increasing at the
end of 10 s?

Oil spilled from a ruptured tanker spreads in a circle whose
area increases at a constant rate of 6 mi2/h. How fast is the
radius of the spill increasing when the area is 9 mi2?

A spherical balloon is inflated so that its volume is increas-
ing at the rate of 3 ft*/min. How fast is the diameter of the
balloon increasing when the radius is 1 ft?

A spherical balloon is to be deflated so that its radius
decreases at a constant rate of 15 cm/min. At what rate
must air be removed when the radius is 9 cm?

A 17 ft ladder is leaning against a wall. If the bottom of the
ladder is pulled along the ground away from the wall at a
constant rate of 5 ft/s, how fast will the top of the ladder be
moving down the wall when it is 8 ft above the ground?

A 13 ft ladder is leaning against a wall. If the top of the
ladder slips down the wall at a rate of 2 ft/s, how fast will
the foot be moving away from the wall when the top is 5 ft
above the ground?

A 10 ft plank is leaning against a wall. If at a certain instant
the bottom of the plank is 2 ft from the wall and is being
pushed toward the wall at the rate of 6 in/s, how fast is the
acute angle that the plank makes with the ground increasing?

A softball diamond is a square whose sides are 60 ft long.
Suppose that a player running from first to second base has a
speed of 25 ft/s at the instant when she is 10 ft from second
base. At what rate is the player’s distance from home plate
changing at that instant?

A rocket, rising vertically, is tracked by a radar station that
is on the ground 5 mi from the launchpad. How fast is the
rocket rising when it is 4 mi high and its distance from the
radar station is increasing at a rate of 2000 mi/h?

For the camera and rocket shown in Figure 3.4.5, at what rate

is the camera-to-rocket distance changing when the rocket
is 4000 ft up and rising vertically at 880 ft/s?
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24,

25.

26.

27.

For the camera and rocket shown in Figure 3.4.5, at what
rate is the rocket rising when the elevation angle is /4
radians and increasing at a rate of 0.2 rad/s?

A satellite is in an elliptical orbit around the Earth. Its
distance r (in miles) from the center of the Earth is given by
4995
" T 15 0.12c0s0

where 0 is the angle measured from the point on the orbit

nearest the Earth’s surface (see the accompanying figure).

(a) Find the altitude of the satellite at perigee (the point
nearest the surface of the Earth) and atapogee (the point
farthest from the surface of the Earth). Use 3960 mi as
the radius of the Earth.

(b) At the instant when 6 is 120°, the angle 0 is increasing
at the rate of 2.7° /min. Find the altitude of the satel-
lite and the rate at which the altitude is changing at this
instant. Express the rate in units of mi/min.

Apogee Perigee

< Figure Ex-23

An aircraft is flying horizontally at a constant height of

4000 ft above a fixed observation point (see the accom-

panying figure). At a certain instant the angle of eleva-

tion € is 30° and decreasing, and the speed of the aircraft

is 300 mi/h.

(a) How fast is 6 decreasing at this instant? Express the
result in units of deg/s.

(b) How fast is the distance between the aircraft and the
observation point changing at this instant? Express the
result in units of ft/s. Use 1 mi = 5280 ft.

-
- 4000 ft

//
¢ .k
A conical water tank with vertex down has a radius of
10 ft at the top and is 24 ft high. If water flows into the

tank at a rate of 20 ft3/min, how fast is the depth of the
water increasing when the water is 16 ft deep?

< Figure Ex-24

Grain pouring from a chute at the rate of 8 ft*/min forms a
conical pile whose height is always twice its radius. How
fast is the height of the pile increasing at the instant when
the pile is 6 ft high?

Sand pouring from a chute forms a conical pile whose height
is always equal to the diameter. If the height increases at a

constant rate of 5 ft/min, at what rate is sand pouring from
the chute when the pile is 10 ft high?

28. Wheat is poured through a chute at the rate of 10 ft*/min

and falls in a conical pile whose bottom radius is always half
the altitude. How fast will the circumference of the base be
increasing when the pile is 8 ft high?

29. Anaircraftis climbing at a 30° angle to the horizontal. How

fast is the aircraft gaining altitude if its speed is 500 mi/h?

30. A boat is pulled into a dock by means of a rope attached to

31.

a pulley on the dock (see the accompanying figure). The
rope is attached to the bow of the boat at a point 10 ft below
the pulley. If the rope is pulled through the pulley at a rate
of 20 ft/min, at what rate will the boat be approaching the
dock when 125 ft of rope is out?

Pulley
Boat

Dock < Figure Ex-30

For the boat in Exercise 30, how fast must the rope be pulled
if we want the boat to approach the dock at arate of 12 ft/min
at the instant when 125 ft of rope is out?

32. A man 6 ft tall is walking at the rate of 3 ft/s toward a

streetlight 18 ft high (see the accompanying figure).
(a) At what rate is his shadow length changing?
(b) How fast is the tip of his shadow moving?

< Figure Ex-32

33. A beacon that makes one revolution every 10 s is located

on a ship anchored 4 kilometers from a straight shoreline.
How fast is the beam moving along the shoreline when it
makes an angle of 45° with the shore?

34. An aircraft is flying at a constant altitude with a constant

speed of 600 mi/h. An antiaircraft missile is fired on a
straight line perpendicular to the flight path of the aircraft
so that it will hit the aircraft at a point P (see the accom-
panying figure). At the instant the aircraft is 2 mi from the
impact point P the missile is 4 mi from P and flying at 1200
mi/h. At that instant, how rapidly is the distance between
missile and aircraft decreasing?

E

< Figure Ex-34
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Solve Exercise 34 under the assumption that the angle
between the flight paths is 120° instead of the assumption
that the paths are perpendicular. [Hint: Use the law of
cosines.]

A police helicopter is flying due north at 100 mi/h and at a
constant altitude of % mi. Below, a car is traveling west on
ahighway at 75 mi/h. Atthe moment the helicopter crosses
over the highway the car is 2 mi east of the helicopter.

(a) How fast is the distance between the car and helicopter
changing at the moment the helicopter crosses the high-
way?

(b) Isthe distance between the car and helicopter increasing
or decreasing at that moment?

A particle is moving along the curve whose equation is
xy? 8
1+y2 5
Assume that the x-coordinate is increasing at the rate of 6
units/s when the particle is at the point (1, 2).
(a) At what rate is the y-coordinate of the point changing
at that instant?
(b) Is the particle rising or falling at that instant?

A point P is moving along the curve whose equation is
y =+/x3+17. When P is at (2, 5), y is increasing at the
rate of 2 units/s. How fast is x changing?

A point P is moving along the line whose equation is
y = 2x. How fast is the distance between P and the point
(3, 0) changing at the instant when P is at (3, 6) if x is
decreasing at the rate of 2 units/s at that instant?

A point P is moving along the curve whose equation is

y = 4/x. Suppose that x is increasing at the rate of 4 units/s

when x = 3.

(a) How fast is the distance between P and the point (2, 0)
changing at this instant?

(b) How fast is the angle of inclination of the line segment
from P to (2, 0) changing at this instant?

A particle is moving along the curve y = x/(x? 4 1). Find
all values of x at which the rate of change of x with respect
to time is three times that of y. [Assume that dx/dt is never
zero. ]

I/ QUICK CHECK ANSWERS 3.4
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A particle is moving along the curve 16x2 4 9y? = 144.
Find all points (x, y) at which the rates of change of x and
y with respect to time are equal. [Assume that dx/dt and
dy/dt are never both zero at the same point.]

The thin lens equation in physics is

1
-+

1 1
s S f
where s is the object distance from the lens, S is the image
distance from the lens, and f is the focal length of the lens.
Suppose that a certain lens has a focal length of 6 cm and
that an object is moving toward the lens at the rate of 2 cm/s.
How fast is the image distance changing at the instant when
the object is 10 cm from the lens? Is the image moving
away from the lens or toward the lens?

Water is stored in a cone-shaped reservoir (vertex down).
Assuming the water evaporates at a rate proportional to the
surface area exposed to the air, show that the depth of the
water will decrease at a constant rate that does not depend
on the dimensions of the reservoir.

A meteor enters the Earth’s atmosphere and burns up at a
rate that, at each instant, is proportional to its surface area.
Assuming that the meteor is always spherical, show that the
radius decreases at a constant rate.

On a certain clock the minute hand is 4 in long and the hour
hand is 3 in long. How fast is the distance between the tips
of the hands changing at 9 o’clock?

Coffee is poured at a uniform rate of 20 cm?/s into a cup
whose inside is shaped like a truncated cone (see the accom-
panying figure). If the upper and lower radii of the cup are
4 cm and 2 cm and the height of the cup is 6 cm, how fast
will the coffee level be rising when the coffee is halfway
up? [Hint: Extend the cup downward to form a cone.]

< Figure Ex-47
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m LOCAL LINEAR APPROXIMATION; DIFFERENTIALS

X/

Magnifying portions of
the graph of y = X2 + 1
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A Figure 3.5.1
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A Figure 3.5.2

In this section we will show how derivatives can be used to approximate nonlinear
functions by linear functions. Also, up to now we have been interpreting dy/dx as a single
entity representing the derivative. In this section we will define the quantities dx and dy
themselves, thereby allowing us to interpret dy/dx as an actual ratio.

Recall from Section 2.2 that if a function f is differentiable at x,, then a sufficiently mag-
nified portion of the graph of f centered at the point P (xg, f(x()) takes on the appearance
of a straight line segment. Figure 3.5.1 illustrates this at several points on the graph of
y= x2 + 1. For this reason, a function that is differentiable at x, is sometimes said to be
locally linear at x.

The line that best approximates the graph of f in the vicinity of P(xg, f(xo)) is the
tangent line to the graph of f at x¢, given by the equation

y = f(xo) + f'(xo)(x — x0)

[see Formula (3) of Section 2.2]. Thus, for values of x near x, we can approximate values
of f(x) by
f(x) & f(xo) + f'(x0)(x — xo) ()

This is called the local linear approximation of f at x,. This formula can also be expressed
in terms of the increment Ax = x — x as

fxo+ Ax) = f(xo) + f'(x0) Ax 2

» Example 1

(a) Find the local linear approximation of f(x) = +/x at xo = 1.

(b) Use the local linear approximation obtained in part (a) to approximate /1.1, and com-
pare your approximation to the result produced directly by a calculating utility.

Solution (a). Since f'(x) = 1/(24/x), it follows from (1) that the local linear approxi-
mation of /X at a point xo is
1
Vx & Jxo+ 2_«/35_0(x — Xp)

Thus, the local linear approximation at xo = 1 is
VER T+ -1 3)

The graphs of y = /x and the local linear approximation y = 1 + %(x — 1) are shown in
Figure 3.5.2.

Solution (b). Applying (3) with x = 1.1 yields
VIl~1+3(1.1-1)=105

Since the tangentline y = 1 + %(x — 1) in Figure 3.5.2 lies above the graph of f(x) = \/x,
we would expect this approximation to be slightly too large. This expectation is confirmed
by the calculator approximation +/1.1 ~ 1.04881. <«
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Examples 1 and 2 illustrate important
ideas and are not meant to suggest that
you should use local linear approxima-
tions for computations that your cal-
culating utility can perform. The main
application of local linear approxima-
tion is in modeling problems where it
is useful to replace complicated func-
tions by simpler ones.
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A Figure 3.5.4

» Example 2

(a) Find the local linear approximation of f(x) = sinx at xo = 0.

(b) Use the local linear approximation obtained in part (a) to approximate sin2°, and
compare your approximation to the result produced directly by your calculating device.

Solution (a). Since f'(x) = cos x, it follows from (1) that the local linear approximation
of sin x at a point xg is sin x A sin xo + (08 x0) (X — X0)
Thus, the local linear approximation at xo = 0 is

sinx & sin0 + (cos 0)(x — 0)

which simplifies to sinx & x 4)

Solution (b). The variable x in (4) is in radian measure, so we must first convert 2° to
radians before we can apply this approximation. Since

2° =2 (l) = L~ 0.0349066 radian
180/ = 90

it follows from (4) that sin 2° ~ 0.0349066. Comparing the two graphs in Figure 3.5.3, we
would expect this approximation to be slightly larger than the exact value. The calculator
approximation sin 2° &~ 0.0348995 shows that this is indeed the case. «

ERROR IN LOCAL LINEAR APPROXIMATIONS

As a general rule, the accuracy of the local linear approximation to f(x) at xo will deteriorate
as x gets progressively farther from xy. To illustrate this for the approximation sin x ~ x
in Example 2, let us graph the function

E(x) = |sinx — x|

which is the absolute value of the error in the approximation (Figure 3.5.4).

In Figure 3.5.4, the graph shows how the absolute error in the local linear approximation
of sin x increases as x moves progressively farther from 0 in either the positive or negative
direction. The graph also tells us that for values of x between the two vertical lines, the
absolute error does not exceed 0.01. Thus, for example, we could use the local linear
approximation sinx ~ x for all values of x in the interval —0.35 < x < 0.35 (radians)
with confidence that the approximation is within +0.01 of the exact value.

DIFFERENTIALS
Newton and Leibniz each used a different notation when they published their discoveries of
calculus, thereby creating a notational divide between Britain and the European continent
that lasted for more than 50 years. The Leibniz notation dy/dx eventually prevailed because
it suggests correct formulas in a natural way, the chain rule

dy dy du

dx  du dx
being a good example.

Up to now we have interpreted dy/dx as a single entity representing the derivative of

y with respect to x; the symbols “dy” and “dx,” which are called differentials, have had
no meanings attached to them. Our next goal is to define these symbols in such a way that
dy/dx can be treated as an actual ratio. To do this, assume that f is differentiable at a point
X, define dx to be an independent variable that can have any real value, and define dy by

the formula
dy = f'(x)dx 5
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If dx # 0, then we can divide both sides of (5) by dx to obtain

dy
E—f(x) (6)

Thus, we have achieved our goal of defining dy and dx so their ratio is f'(x). Formula (5)
is said to express (6) in differential form.

To interpret (5) geometrically, note that f'(x) is the slope of the tangent line to the graph
of f at x. The differentials dy and dx can be viewed as a corresponding rise and run of
this tangent line (Figure 3.5.5).

» Example 3 Express the derivative with respect to x of y = x? in differential form,
and discuss the relationship between dy and dx at x = 1.

Solution. The derivative of y with respect to x is dy/dx = 2x, which can be expressed
in differential form as
dy =2xdx

When x = 1 this becomes dy = 2dx

This tells us that if we travel along the tangent line to the curve y = x? at x = 1, then a
change of dx units in x produces a change of 2 dx units in y. Thus, for example, a run of
dx = 2 units produces a rise of dy = 4 units along the tangent line (Figure 3.5.6). <«

Itis important to understand the distinction between the increment Ay and the differential
dy. To see the difference, let us assign the independent variables dx and Ax the same value,
sodx = Ax. Then Ay represents the change in y that occurs when we start at x and travel
along the curve y = f(x) until we have moved Ax (= dx) units in the x-direction, while
dy represents the change in y that occurs if we start at x and travel along the tangent line
until we have moved dx (= Ax) units in the x-direction (Figure 3.5.7).

» Example 4 Lety = ./x.

(a) Find formulas for Ay and dy.

(b) Evaluate Ay and dy at x = 4 with dx = Ax = 3. Then make a sketch of y = /x,
showing the values of Ay and dy in the picture.

Solution (a). With y = f(x) = /x we obtain
Ay = f(x+ Ax) — f(x) =Vx + Ax — Vx

and dy 1 4 L
_—= SO = ——=dax
dx  2/x MW

Solution (b). Atx =4 withdx = Ax = 3,
Ay =7 —4~0.65

and d 1(3) 3 075
y=55®=7=0

Figure 3.5.8 shows the curve y = /x together with Ay and dy. <«

LOCAL LINEAR APPROXIMATION FROM THE DIFFERENTIAL POINT OF VIEW
Although Ay and dy are generally different, the differential dy will nonetheless be a good
approximation of Ay provided dx = Ax is close to 0. To see this, recall from Section 2.2
that y

flx) = 1li A
V= 00 Ax
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Real-world measurements inevitably
have small errors.

Note that measurement error is pos-
itive if the measured value is greater
than the exact value and is negative if
it is less than the exact value. The sign
of the propagated error conveys similar
information.

Explain why an error estimate of at
most :I:é inch is reasonable for a ruler
that is calibrated in sixteenths of an
inch.
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It follows that if Ax is close to 0, then we will have f/(x) &~ Ay/Ax or, equivalently,
Ay ~ f'(x)Ax

If we agree to let dx = Ax, then we can rewrite this as
Ay~ f'(x)dx = dy (7

In words, this states that for values of dx near zero the differential dy closely approximates
the increment Ay (Figure 3.5.7). But this is to be expected since the graph of the tangent
line at x is the local linear approximation of the graph of f.

ERROR PROPAGATION

In real-world applications, small errors in measured quantities will invariably occur. These
measurement errors are of importance in scientific research—all scientific measurements
come with measurement errors included. For example, your height might be measured as
170 £ 0.5 cm, meaning that your exact height lies somewhere between 169.5 and 170.5 cm.
Researchers often must use these inexactly measured quantities to compute other quantities,
thereby propagating the errors from the measured quantitites to the computed quantities.
This phenomenon is called error propagation. Researchers must be able to estimate errors
in the computed quantities. Our goal is to show how to estimate these errors using local
linear approximation and differentials. For this purpose, suppose

Xo is the exact value of the quantity being measured

yo = f(xp) is the exact value of the quantity being computed
x is the measured value of x,

y = f(x) is the computed value of y

We define dx (= Ax) = x — xq to be the measurement error of x
Ay = f(x) — f(xo) to be the propagated error of y
It follows from (7) with x replacing x that the propagated error Ay can be approximated
b
Y Ay~ dy = f'(x0) dx ®

Unfortunately, there is a practical difficulty in applying this formula since the value of x is
unknown. (Keep in mind that only the measured value x is known to the researcher.) This
being the case, it is standard practice in research to use the measured value x in place of x,
in (8) and use the approximation

Ay ~dy = f'(x)dx )

for the propagated error.

» Example 5 Suppose that the side of a square is measured with a ruler to be 10 inches
with a measurement error of at most :I:%2 in. Estimate the error in the computed area of the
square.

Solution. Let x denote the exact length of a side and y the exact area so that y = x2. It
follows from (9) with f(x) = x? that if dx is the measurement error, then the propagated
error Ay can be approximated as

Ay~ dy =2xdx
Substituting the measured value x = 10 into this equation yields
dy =20dx (10)

But to say that the measurement error is at most :t% means that
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Polyurethane spheres are used in the
maintenance of oil and gas pipelines.

Multiplying these inequalities through by 20 and applying (10) yields
20(—55) <dy <20(35) orequivalently —3 <dy <3
Thus, the propagated error in the area is estimated to be within :I:— in”. <

If the true value of a quantity is ¢ and a measurement or calculation produces an error Ag,
then Aq/q is called the relative error in the measurement or calculation; when expressed
as a percentage, Aq/q is called the percentage error. As a practical matter, the true value
q is usually unknown, so that the measured or calculated value of ¢ is used instead; and the
relative error is approximated by dg/q.

» Example 6 The diameter of a polyurethane sphere is measured with percentage error
within £0.4%. Estimate the percentage error in the calculated volume of the sphere.

Solution. A sphere of diameter x has radius » = x/2 and volume
4 5 4 (x )3 _ I

V = 57’”‘ = §7T 5 = ETUC
Therefore dv 1
= —mx? and dV = —mx’dx
dx 2 2

The relative error in V' is then approximately

dv  smx?dx dx
—=f—=3= (11
% Fmx? X
We are given that the percentage error in the measured value of x is within 0.4%, which

that
feans tha 0.004 < ¥F < 0.004

X
Multiplying these inequalities through by 3 and applying (11) yields

dv
—0.012 < 2 < 0.012

Thus, we estimate the percentage error in the calculated value of V to be within £1.2%.
<

MORE NOTATION; DIFFERENTIAL FORMULAS

The symbol df is another common notation for the differential of a function y = f(x).
For example, if f(x) = sinx, then we can write df = cosx dx. We can also view the
symbol “d” as an operator that acts on a function to produce the corresponding differential.
For example, d [x2] = 2x dx, d[sin x] = cos x dx, and so on. All of the general rules of
differentiation then have corresponding differential versions:

DERIVATIVE FORMULA DIFFERENTIAL FORMULA

S1l=0 d[c] = 0

ey = cg d[cf] = c df
[f+g] 32 d[f +g] = df +dg

df ~
Qpig =99, g df dlfg) = fdg + g f
df _dg
g[f] I " d[j]:gdf—fdg
dx g g2 gZ




For example,
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d[x?sinx] = (x* cos x + 2x sinx) dx

= x%(cos x dx) + (2x dx) sin x
= x2d[sin x] + (sin x) d[x?]

illustrates the differential version of the product rule.

“QUlCK CHECK EXERCISES 3.5  (See page 219 for answers.)

1. The local linear approximation of f at x( uses the
line to the graph of y = f(x) at x = Xy to approximate val-
uesof __ for values of x near

2. Find an equation for the local linear approximation to
y=5—x>atxy=2.

3. Let y =5 — x%. Find dy and Ay at x = 2 with
dx = Ax =0.1.

EXERCISE SET 3.5 [ Graphing utility

4. The intensity of light from a light source is a function
I = f(x) of the distance x from the light source. Suppose
that a small gemstone is measured to be 10 m from a light
source, f(10) = 0.2 W/mz, and f'(10) = —0.04 W/m3. If
the distance x = 10 m was obtained with a measurement
error within £0.05 m, estimate the percentage error in the
calculated intensity of the light on the gemstone.

1. (a) UseFormula (1) toobtain thelocal linear approximation
of x> atxg = 1.
(b) Use Formula (2) to rewrite the approximation obtained
in part (a) in terms of Ax.
(c) Use the result obtained in part (a) to approximate
(1.02)3, and confirm that the formula obtained in part
(b) produces the same result.

2. (a) Use Formula (1) to obtain the local linear approxima-
tion of 1/x at xy = 2.
(b) Use Formula (2) to rewrite the approximation obtained
in part (a) in terms of Ax.
(c) Use the result obtained in part (a) to approximate
1/2.05, and confirm that the formula obtained in part
(b) produces the same result.

FOCUS ON CONCEPTS

3. (a) Find the local linear approximation of the function
f(x) =4/1 4+ xatxy =0, and use it to approximate

V0.9 and +/1.1.
(b) Graph f and its tangent line at x( together, and use
the graphs to illustrate the relationship between the
exact values and the approximations of V0.9 and

V1L

4. A student claims that whenever a local linear approxima-
tion is used to approximate the square root of a number,
the approximation is too large.

(a) Write a few sentences that make the student’s claim
precise, and justify this claim geometrically.
(b) Verify the student’s claim algebraically using ap-

proximation (1).

5-10 Confirm that the stated formula is the local linear approx-
imation at xo = 0.

1 1
5. (14+x)P~1+15x 6. ~ 14 —x

1
7. tanx & x 8, —~1—x
1+x
9. e* =~ 1+x 10. In(1+x) =~ x

11-16 Confirm that the stated formula is the local linear ap-
proximation of f at xo = 1, where Ax = x — 1.
1. f(x) =x% A+ Ax)*~ 1 +4Ax
12. f(x) =x; VT+Ax~ 1+ JAx
1 1 1 1
B I0 = svay T3 e
14. f(x) = (@4 +x)% (54 Ax)’ ~ 125+ T5Ax

1
15. tan~' x; tan"'(1 + Ax) & % + EAX

16. sin~! (f) sin~! l—l—le NZ—FLAx
' ’ 22 6 V3

] 17-20 Confirm that the formula is the local linear approxima-
tion at xo = 0, and use a graphing utility to estimate an interval
of x-values on which the error is at most 0.1.

1 1 1 1
17. Vx +3~ 3+ ——x 18. AN+ —x
243 9_x 3 4
1
19. tan 2.x o 2x 20. m ~ 1 — 10)(

21. (a) Use the local linear approximation of sinx at xo = 0
obtained in Example 2 to approximate sin 1°, and com-
pare the approximation to the result produced directly
by your calculating device.

(b) How would you choose x( to approximate sin 44°?
(c) Approximate sin 44°; compare the approximation to the
result produced directly by your calculating device.

22. (a) Use the local linear approximation of tan x at xo = 0 to
approximate tan 2°, and compare the approximation to
the result produced directly by your calculating device.

(b) How would you choose x( to approximate tan 61°?

(cont.)
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(c) Approximate tan 61°; compare the approximation to the
result produced directly by your calculating device.

23-33 Use an appropriate local linear approximation to es-
timate the value of the given quantity.

23. (3.02)* 24. (1.97)° 25. /65
26. /24 27. V/80.9 28. +/36.03
29. sin0.1 30. tan0.2 31. cos31°
32. In(1.01) 33. tan~'(0.99)

FOCUS ON CONCEPTS

34. The approximation (I +x)* ~ 1+ kx is commonly

used by engineers for quick calculations.

(a) Derive this result, and use it to make a rough esti-
mate of (1.001)%.

(b) Compare your estimate to that produced directly by
your calculating device.

(c) If k is a positive integer, how is the approxima-
tion (1 + x)*¥ &~ 1 + kx related to the expansion of
(1 + x)* using the binomial theorem?

35. Use the approximation (1 + x)* & 1 4 kx, along with
some mental arithmetic to show that \3/ 8.24 ~ 2.02 and
4.08%2 ~ 8.24.

36. Referring to the accompanying figure, suppose that the
angle of elevation of the top of the building, as measured
from a point 500 ft from its base, is found to be 6 = 6°.
Use an appropriate local linear approximation, along
with some mental arithmetic to show that the building
is about 52 ft high.

%5 hin

; 500 ft 1 < Figure Ex-36

37. (a) Lety = 1/x. Find dy and Ay at x = 1 with
dx = Ax = -0.5.
(b) Sketch the graph of y = 1/x, showing dy and Ay
in the picture.
38. (a) Lety = /x. Find dy and Ay at x = 9 with
dx = Ax = —1.
(b) Sketch the graph of y = /x, showing dy and Ay
in the picture.

39-42 Find formulas for dy and Ay.
39, y=x° 40. y =8x —4
41, y=x*—2x+1 42. y =sinx

43-46 Find the differential dy.

43. (a) y = 4x> — Tx? (b) y =xcosx
4. (a) y=1/x (b) y=5tanx
45. (a) y=x+/1—x b y=Q0+x)""
1 1—x3
46. @ y = 5— ®) y=5—

47-50 True-False Determine whether the statement is true or

fal

47.
48.

49.

50.

51

se. Explain your answer.

A differential dy is defined to be a very small change in y.
The error in approximation (2) is the same as the error in
approximation (7).

Alocal linear approximation to a function can never be iden-
tically equal to the function.

A local linear approximation to a nonconstant function can
never be constant.

=54 Use the differential dy to approximate Ay when x

changes as indicated.

51

.y =4/3x —2; fromx =2tox =2.03

52. y =+/x2+38; fromx = 1tox =0.97
53. y = xzxﬁ; from x = 2 to x = 1.96
54. y =x4/8x +1; fromx =3tox =3.05

5S.

56.

57.

58.

59.

60.

61.

The side of a square is measured to be 10 ft, with a possible

error of £0.1 ft.

(a) Use differentials to estimate the error in the calculated
area.

(b) Estimate the percentage errors in the side and the area.

The side of a cube is measured to be 25 cm, with a possible

error of £1 cm.

(a) Use differentials to estimate the error in the calculated
volume.

(b) Estimate the percentage errors in the side and volume.

The hypotenuse of a right triangle is known to be 10 in

exactly, and one of the acute angles is measured to be 30°,

with a possible error of £1°.

(a) Use differentials to estimate the errors in the sides
opposite and adjacent to the measured angle.

(b) Estimate the percentage errors in the sides.

One side of a right triangle is known to be 25 cm exactly.

The angle opposite to this side is measured to be 60°, with

a possible error of £0.5°.

(a) Use differentials to estimate the errors in the adjacent
side and the hypotenuse.

(b) Estimate the percentage errors in the adjacent side and
hypotenuse.

The electrical resistance R of a certain wire is given by
R = k/r?, where k is a constant and r is the radius of the
wire. Assuming that the radius » has a possible error of
+5%, use differentials to estimate the percentage error in
R. (Assume £ is exact.)

A 12-foot ladder leaning against a wall makes an angle 6
with the floor. If the top of the ladder is & feet up the wall,
express & in terms of 6 and then use dh to estimate the
change in 4 if 6 changes from 60° to 59°.

The area of a right triangle with a hypotenuse of H is calcu-
lated using the formula A = leH 25in 20, where 6 is one of
the acute angles. Use differentials to approximate the error
in calculating A if H = 4 cm (exactly) and 6 is measured
to be 30°, with a possible error of +15’.



62.

63.

64.

65.

66.

67.

68.

The side of a square is measured with a possible percentage
error of +1%. Use differentials to estimate the percentage
error in the area.

The side of a cube is measured with a possible percentage
error of 2%. Use differentials to estimate the percentage
error in the volume.

The volume of a sphere is to be computed from a measured
value of its radius. Estimate the maximum permissible per-
centage error in the measurement if the percentage error in
the volume must be kept within +3%. (V = %mﬁ3 is the
volume of a sphere of radius r.)

The area of a circle is to be computed from a measured
value of its diameter. Estimate the maximum permissible
percentage error in the measurement if the percentage error
in the area must be kept within 4-1%.

A steel cube with 1-inch sides is coated with 0.01 inch of
copper. Use differentials to estimate the volume of copper
in the coating. [Hint: Let AV be the change in the volume
of the cube.]

A metal rod 15 cm long and 5 cm in diameter is to be cov-
ered (except for the ends) with insulation thatis 0.1 cm thick.
Use differentials to estimate the volume of insulation. [Hint:
Let AV be the change in volume of the rod.]

The time required for one complete oscillation of a pendu-
lum is called its period. If L is the length of the pendu-
lum and the oscillation is small, then the period is given by
P = 2m/L/g, where g is the constant acceleration due to
gravity. Use differentials to show that the percentage error
in P is approximately half the percentage error in L.

t/ QUICK CHECK ANSWERS 3.5

69.

70.

71.

72.
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If the temperature T of a metal rod of length L is changed by
an amount AT, then the length will change by the amount
AL = aLAT, where « is called the coefficient of linear
expansion. For moderate changes in temperature « is taken
as constant.

(a) Suppose that a rod 40 cm long at 20°C is found to be
40.006 cm long when the temperature is raised to 30°C.
Find «.

(b) If an aluminum pole is 180 cm long at 15°C, how long
is the pole if the temperature is raised to 40°C? [Take
a=23x107%/°C]

If the temperature T of a solid or liquid of volume V is

changed by an amount AT, then the volume will change by

the amount AV = BVAT, where B is called the coefficient
of volume expansion. For moderate changes in temperature

B is taken as constant. Suppose that a tank truck loads 4000

gallons of ethyl alcohol at a temperature of 35°C and deliv-

ers its load sometime later at a temperature of 15°C. Using

B=75x 10~*/°C for ethyl alcohol, find the number of

gallons delivered.

Writing Explain why the local linear approximation of a
function value is equivalent to the use of a differential 